liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Linear Regression and Adaptive Appearance Models for Fast Simultaneous Modelling and Tracking
Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
Royal Brisbane and Womens Hospital.
Czech Technical University.
University of Surrey.
2011 (English)In: International Journal of Computer Vision, ISSN 0920-5691, E-ISSN 1573-1405, Vol. 95, no 2, 154-179 p.Article in journal (Refereed) Published
Abstract [en]

This work proposes an approach to tracking by regression that uses no hard-coded models and no offline learning stage. The Linear Predictor (LP) tracker has been shown to be highly computationally efficient, resulting in fast tracking. Regression tracking techniques tend to require offline learning to learn suitable regression functions. This work removes the need for offline learning and therefore increases the applicability of the technique. The online-LP tracker can simply be seeded with an initial target location, akin to the ubiquitous Lucas-Kanade algorithm that tracks by registering an image template via minimisation. A fundamental issue for all trackers is the representation of the target appearance and how this representation is able to adapt to changes in target appearance over time. The two proposed methods, LP-SMAT and LP-MED, demonstrate the ability to adapt to large appearance variations by incrementally building an appearance model that identifies modes or aspects of the target appearance and associates these aspects to the Linear Predictor trackers to which they are best suited. Experiments comparing and evaluating regression and registration techniques are presented along with performance evaluations favourably comparing the proposed tracker and appearance model learning methods to other state of the art simultaneous modelling and tracking approaches.

Place, publisher, year, edition, pages
Springer Verlag (Germany) , 2011. Vol. 95, no 2, 154-179 p.
Keyword [en]
Regression tracking; Online appearance modelling
National Category
Engineering and Technology
URN: urn:nbn:se:liu:diva-71097DOI: 10.1007/s11263-010-0364-4ISI: 000294566000004OAI: diva2:444819
Available from: 2011-09-30 Created: 2011-09-30 Last updated: 2012-12-21

Open Access in DiVA

fulltext(3155 kB)363 downloads
File information
File name FULLTEXT01.pdfFile size 3155 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Ellis, Liam
By organisation
Computer VisionThe Institute of Technology
In the same journal
International Journal of Computer Vision
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 363 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 179 hits
ReferencesLink to record
Permanent link

Direct link