liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Statistical framework for assessing trends in sub-daily and daily precipitation extremes
Linköping University, Department of Computer and Information Science, Statistics. Linköping University, Faculty of Arts and Sciences.
Linköping University, Department of Computer and Information Science, Statistics. Linköping University, Faculty of Arts and Sciences.
Swedish University of Agricultural Sciences, Uppsala, Sweden.
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Extreme precipitation events vary with regard to duration, and hence sub-daily data do not necessarily exhibit the same trends as daily data. Here, we present a framework for a comprehensive yet easily undertaken statistical analysis of long-term trends in daily and sub-daily extremes. A parametric peaks-over-threshold model is employed to estimate annual percentiles for data of different temporal resolution. Moreover, a trend-durationfrequency table is used to summarize how the statistical significance of trends in annual percentiles varies with the temporal resolution of the underlying data and the severity of the extremes. The proposed framework also includes nonparametric tests that can integrate information about nonlinear monotonic trends at a network of stations. To illustrate our methodology, we use climate model output data from Kalmar, Sweden, and observational data from Vancouver, Canada. In both these cases, the results show different trends for moderate and high extremes, and also a clear difference in the statistical evidence of trends for daily and sub-daily data.

Keyword [en]
Rainfall extremes; precipitation; sub-daily, temporal trend; generalized Pareto distribution; climate indices; global warming
National Category
Probability Theory and Statistics
Identifiers
URN: urn:nbn:se:liu:diva-71296OAI: oai:DiVA.org:liu-71296DiVA: diva2:447067
Available from: 2011-10-10 Created: 2011-10-10 Last updated: 2011-10-10Bibliographically approved
In thesis
1. Characterizing Temporal Changes and Inter-Site Correlations in Daily and Sub-Daily Precipitation Extremes
Open this publication in new window or tab >>Characterizing Temporal Changes and Inter-Site Correlations in Daily and Sub-Daily Precipitation Extremes
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Information on weather extremes is essential for risk awareness in planning of infrastructure and agriculture, and it may also playa key role in our ability to adapt to recurrent or more or less unique extreme events. This thesis reports new statistical methodologies that can aid climate risk assessment under conditions of climate change. This increasing access to high temporal resolution of data is a central factor when developing novel techniques for this purpose. In particular, a procedure is introduced for analysis of long-term changes in daily and sub-daily records of observed or modelled weather extremes. Extreme value theory is employed to enhance the power of the proposed statistical procedure, and inter-site dependence is taken into account to enable regional analyses. Furthermore, new methods are presented to summarize and visualize spatial patterns in the temporal synchrony and dependence of weather events such as heavy precipitation at a network of meteorological stations. The work also demonstrates the significance of accounting for temporal synchrony in the diagnostics of inter-site asymptotic dependence.

Abstract [sv]

Information om extrema väderhändelser är väsentligt för riskmedveten planering av infrastruktur och jordbruk. Sådan information kan också spela en avgörande roll för vår förmåga att anpassa oss till extremhändelser som är regelbundet återkommande eller mer eller mindre unika. Denna avhandling beskriver nya statistiska metoder som kan bidra till att bedöma klimatrisker när klimatet förändras. Den ökande tillgången till data med hög tidsupplösning är en central faktor när vi utvecklar nya tekniker för detta ändamål. Speciellt introducerar vi metodik för att analysera långsiktiga förändringar i dagliga eller ännu mera högupplösta data avseende observerade eller modellerade väderextremer. Extremvärdesteori utnyttias för att öka styrkan av statistiska tester, och hänsyn tas till beroendet mellan data från olika platser så att regionala bedömningar blir möjliga. Vidare presenteras nya metoder för att sammanfatta och visualisera rumsliga mönster i samstämmigheten av och beroendet mellan extrema väderhändelser såsom hög nederbördsintensitet i ett nätverk av meteorologiska stationer. Arbetet visar också betydelsen av ta hänsyn till den tidsmässiga överensstämmelsen när man undersöker det asymptotiska beroendet mellan extrema händelser vid olika stationer.

Place, publisher, year, edition, pages
Linköping: Linköpings universitet, 2011. 53 p.
Series
Linköping Studies in Arts and Science, ISSN 0282-9800 ; 536Linköping Studies in Statistics, ISSN 1651-1700 ; 13
Keyword
Klimatförändringar, matematiska modeller
National Category
Probability Theory and Statistics
Identifiers
urn:nbn:se:liu:diva-70282 (URN)978-91-7393-110-6 (ISBN)
Public defence
2011-10-10, Visionen, Hus B, Campus Valla, Linköpings universitet, Linköping, 13:15 (English)
Opponent
Supervisors
Available from: 2011-10-10 Created: 2011-08-30 Last updated: 2014-10-07Bibliographically approved

Open Access in DiVA

No full text

Authority records BETA

Burauskaite-Harju, AgneGrimvall, Anders

Search in DiVA

By author/editor
Burauskaite-Harju, AgneGrimvall, Anders
By organisation
StatisticsFaculty of Arts and Sciences
Probability Theory and Statistics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 161 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf