liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Biotoxicity of nanometallic oxides and their ligands with photosensitizers in osteosarcom a cells
Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
Pakistan Institute of Engineering and Applied Sciences, NILORE, 45650, Islamabad, Pakistan.
Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
Abstract [en]

The cytotoxic effects in osteosarcoma (U2OS) cells to different nanosized metallic oxides e.g. zinc oxide nanowires (ZnO-NWs), manganese di-oxide nanowires (MnO2 NWs), ferric oxide nanoparticles (Fe2O3 NPs) individually and their complex forms with photosensitizers photofrin®, 5-Aminolevulinic acid (5-ALA), and protoporphyrin IX (Pp IX) were studied. The cellular effects were assayed by analyzing the cellular morphology. The reactive oxygen species (ROS) were detected using 2', 7'-Dichlorofluorescein diacetate, and cell viability were assessed using MTT assay under ultraviolet (UV), visible light and laser exposed conditions. Prominent cell death with above cited nanomaterials in their complex forms with photosensitizer was observed in labeled U2OS cells. This cell death might be due to their synergetic effect via the release of singlet oxygen species in osteosarcoma cells showing their anticancer-cell effects.

Keyword [en]
Osteosarcoma cell, reactive oxygen species (ROS), MTT assay, photodynamic therapy (PDT)
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:liu:diva-71317OAI: oai:DiVA.org:liu-71317DiVA: diva2:447261
Available from: 2011-10-11 Created: 2011-10-11 Last updated: 2014-01-15Bibliographically approved
In thesis
1. Device Fabrication and Photosensitizing Role of ZnO Nanostructures in Photodynamic Therapy of Cancer
Open this publication in new window or tab >>Device Fabrication and Photosensitizing Role of ZnO Nanostructures in Photodynamic Therapy of Cancer
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In nanoscience and nanotechnology, zinc oxide (ZnO) is gaining much research attention due to direct wide band gap (3.3 eV), large exciton binding energy (60 meV), and deep level defects emissions that cover the whole visible range. ZnO nanorods (NRs) in comparison to normal bio molecules and large surface area to volume ratio, allow them to interact within the cell thus are used as convincing intracellular carriers of photosensitizers. Vertical NRs are wave guiding cavities enhancing the light extraction efficiency from devices and are stable photosensitizing agents with their biophotonic, and biodegradation properties, therefore are appealing candidates for the photodynamic therapy of cancer.

The heterojunction LEDs of ZnO NRs/p-GaN are best choice to take the advantage of GaN ideal blue-light emission and fabricated LEDs explore the potential of white LEDs with superior performance. The main objective of this thesis is not only to fabricate ZnO NRs/p-GaN, or ZnO nanotubes (ZNTs)/p-GaN heterostructures, but also to investigate their optical properties for photodynamic therapy. These LEDs have showed enhanced EL intensity covering the visible band (425–750 nm).

ZnO nanorods are grown on the borosilicate glass capillaries (0.7 μm diameter) and then conjugated with photosensitizer. Such glass capillaries having ZnO nanorods complex with photosensitizer on them are used as pointer for intracellular mediated photochemistry in cells to achieve their necrosis. Mitochondrial staining of melanoma and foreskin fibroblast cells was done by Mitotracker Red with the aim of targeting the specific organelle with the prepared ZnO nanowires (NWs) Femtotip to see ROS production. Cytotoxic effects of nanometallic oxides e.g. ZnO-NRs, MnO2 NRs, and Fe2O3 NPs individually and their ligands with photosensitizers in osteosarcoma (U2OS) cells are also explored. Thus bare and ligands of nanometallic oxides, with particular focus of ZnO nanowires are having significant and convincing cytotoxic effects via the liberation of reactive oxygen species as well as Zn+2 ions in labeled cells, thus can be assigned as anticancer agents for breast cancer, melanoma cancer and osteosarcoma cells.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2011. 56 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1392
Keyword
Zinc oxide nanostructures, light emitting diodes, reactive oxygen species, photosensitizer, cancer cell, photodynamic therapy
National Category
Natural Sciences
Identifiers
urn:nbn:se:liu:diva-71319 (URN)978-91-7393-083-3 (ISBN)
Public defence
2011-10-21, K2, Kåkenhus, Campus Norrköping, Linköpings universitet, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2011-10-11 Created: 2011-10-11 Last updated: 2014-01-15Bibliographically approved

Open Access in DiVA

No full text

Authority records BETA

Kishwar, SultanaIsrar, Muhammad QadirNour, OmerWillander, Magnus

Search in DiVA

By author/editor
Kishwar, SultanaIsrar, Muhammad QadirNour, OmerWillander, Magnus
By organisation
Department of Science and TechnologyThe Institute of TechnologyDepartment of Physics, Chemistry and Biology
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 201 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf