liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
3D Model of Fuel Tank for System Simulation: A methodology for combining CAD models with simulation tools
Linköping University, Department of Management and Engineering, Machine Design.
2011 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

Engineering aircraft systems is a complex task. Therefore models and computer simulations are needed to test functions and behaviors of non existing systems, reduce testing time and cost, reduce the risk involved and to detect problems early which reduce the amount of implementation errors. At the section Vehicle Simulation and Thermal Analysis at Saab Aeronautics in Linköping every basic aircraft system is designed and simulated, for example the fuel system. Currently 2-dimensional rectangular blocks are used in the simulation model to represent the fuel tanks. However, this is too simplistic to allow a more detailed analysis. The model needs to be extended with a more complex description of the tank geometry in order to get a more accurate model.

This report explains the different steps in the developed methodology for combining 3-dimensional geometry models of any fuel tank created in CATIA with dynamic simulation of the fuel system in Dymola. The new 3-dimensional representation of the tank in Dymola should be able to calculate fuel surface location during simulation of a maneuvering aircraft. 

The first step of the methodology is to create a solid model of the fuel contents in the tank. Then the area of validity for the model has to be specified, in this step all possible orientations of the fuel acceleration vector within the area of validity is generated. All these orientations are used in the automated volume analysis in CATIA. For each orientation CATIA splits the fuel body in a specified number of volumes and records the volume, the location of the fuel surface and the location of the center of gravity. This recorded data is then approximated with the use of radial basis functions implemented in MATLAB. In MATLAB a surrogate model is created which are then implemented in Dymola. In this way any fuel surface location and center of gravity can be calculated in an efficient way based on the orientation of the fuel acceleration vector and the amount of fuel.

The new 3-dimensional tank model is simulated in Dymola and the results are compared with measures from the model in CATIA and with the results from the simulation of the old 2-dimensional tank model. The results shows that the 3-dimensional tank gives a better approximation of reality and that there is a big improvement compared with the 2-dimensional tank model. The downside is that it takes approximately 24 hours to develop this model.

Abstract [sv]

Att utveckla ett nytt flygplanssystem är en väldigt komplicerad arbetsuppgift. Därför används modeller och simuleringar för att testa icke befintliga system, minska utvecklingstiden och kostnaderna, begränsa riskerna samt upptäcka problem tidigt och på så sätt minska andelen implementerade fel. Vid sektionen Vehicle Simulation and Thermal Analysis på Saab Aeronautics i Linköping designas och simuleras varje grundflygplanssystem, ett av dessa system är bränslesystemet. För närvarande används 2-dimensionella rätblock i simuleringsmodellen för att representera bränsletankarna, vilket är en väldigt grov approximation. För att kunna utföra mer detaljerade analyser behöver modellerna utökas med en bättre geometrisk beskrivning av bränsletankarna.

Denna rapport går igenom de olika stegen i den framtagna metodiken för att kombinera 3- dimensionella tankmodeller skapade i CATIA med dynamisk simulering av bränslesystemet i Dymola. Den nya 3-dimensionella representationen av en tank i Dymola bör kunna beräkna bränsleytans läge under en simulering av ett manövrerande flygplan.

Första steget i metodiken är att skapa en solid modell av bränslet som finns i tanken. Därefter specificeras modellens giltighetsområde och alla tänkbara riktningar hos accelerationsvektorn som påverkar bränslet genereras, dessa används sedan i den automatiserade volymanalysen i CATIA.  För varje riktning delar CATIA upp bränslemodellen i ett bestämt antal delar och registrerar volymen, bränsleytans läge samt tyngdpunktens position för varje del. Med hjälp av radiala basfunktioner som har implementerats i MATLAB approximeras dessa data och en surrogatmodell tas fram, denna implementeras sedan i Dymola. På så sätt kan bränsleytans och tyngdpunktens läge beräknas på ett effektivt sätt, baserat på riktningen hos bränslets accelerationsvektor samt mängden bränsle i tanken.

Den nya 3-dimensionella tankmodellen simuleras i Dymola och resultaten jämförs med mätningar utförda i CATIA samt med resultaten från den gamla simuleringsmodellen. Resultaten visar att den 3-dimensionella tankmodellen ger en mycket bättre representation av verkligheten och att det är en stor förbättring jämfört med den 2-dimensionella representationen. Nackdelen är att det tar ungefär 24 timmar att få fram denna 3-dimensionella representation.

Place, publisher, year, edition, pages
2011. , 44 p.
Keyword [en]
CAD, CATIA, Dymola, Integration, Simulation, Surrogate modeling, Radial basis functions, VBScript
National Category
Mechanical Engineering
Identifiers
URN: urn:nbn:se:liu:diva-71370ISRN: LIU-IEI-TEK-A--11/01201--SEOAI: oai:DiVA.org:liu-71370DiVA: diva2:448364
Subject / course
Machine Design
Presentation
(Swedish)
Uppsok
Technology
Supervisors
Examiners
Available from: 2011-10-17 Created: 2011-10-13 Last updated: 2011-10-17Bibliographically approved

Open Access in DiVA

fulltext(1762 kB)10709 downloads
File information
File name FULLTEXT01.pdfFile size 1762 kBChecksum SHA-512
5e7ddee367fefa67596177e779ca7fe47fc08875ccec639e19ff0a9292e97a2bca5c10fd4b9a6f9a74077089c7f41acde6932a28c954d9e46b24f6db040a1df3
Type fulltextMimetype application/pdf

By organisation
Machine Design
Mechanical Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 10710 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 505 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf