liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Response of LiF:Mg,Ti thermoluminescent dosimeters at photon energies relevant to the dosimetry of brachytherapy (andlt; 1 MeV)
Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL.
Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL.
Swedish Radiation Safety Authority.
Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL. Linköping University, Center for Medical Image Science and Visualization, CMIV.ORCID iD: 0000-0003-0209-498X
2011 (English)In: Medical physics (Lancaster), ISSN 0094-2405, Vol. 38, no 10, 5539-5550 p.Article in journal (Refereed) Published
Abstract [en]

Purpose: High energy photon beams are used in calibrating dosimeters for use in brachytherapy since absorbed dose to water can be determined accurately and with traceability to primary standards in such beams, using calibrated ion chambers and standard dosimetry protocols. For use in brachytherapy, beam quality correction factors are needed, which include corrections for differences in mass energy absorption properties between water and detector as well as variations in detector response (intrinsic efficiency) with radiation quality, caused by variations in the density of ionization (linear energy transfer (LET) -distributions) along the secondary electron tracks. The aim of this work was to investigate experimentally the detector response of LiF:Mg, Ti thermoluminescent dosimeters (TLD) for photon energies below 1 MeV relative to (60)Co and to address discrepancies between the results found in recent publications of detector response. less thanbrgreater than less thanbrgreater thanMethods: LiF:Mg,Ti dosimeters of formulation MTS-N Poland were irradiated to known values of air kerma free-in-air in x-ray beams at tube voltages 25-250 kV, in (137)Cs- and (60)Co-beams at the Swedish Secondary Standards Dosimetry Laboratory. Conversions from air kerma free-in-air into values of mean absorbed dose in the dosimeters in the actual irradiation geometries were made using EGSnrc Monte Carlo simulations. X-ray energy spectra were measured or calculated for the actual beams. Detector response relative to that for (60)Co was determined at each beam quality. less thanbrgreater than less thanbrgreater thanResults: An increase in relative response was seen for all beam qualities ranging from 8% at tube voltage 25 kV (effective energy 13 keV) to 3%-4% at 250 kV (122 keV effective energy) and (137)Cs with a minimum at 80 keV effective energy (tube voltage 180 kV). The variation with effective energy was similar to that reported by Davis [Radiat. Prot. Dosim. 106, 33-43 (2003)] with our values being systematically lower by 2%-4%. Compared to the results by Nunn [Med. Phys. 35, 1861-1869 (2008)], the relative detector response as a function of effective energy differed in both shape and magnitude. This could be explained by the higher maximum read-out temperature (350 degrees C) used by Nunn [Med. Phys. 35, 1861-1869 (2008)], allowing light emitted from high-temperature peaks with a strong LET dependence to be registered. Use of TLD-100 by Davis [Radiat. Prot. Dosim. 106, 33-43 (2003)] with a stronger super-linear dose response compared to MTS-N was identified as causing the lower relative detector response in this work. less thanbrgreater than less thanbrgreater thanConclusions: Both careful dosimetry and strict protocols for handling the TLDs are required to reach solid experimental data on relative detector response. This work confirms older findings that an over-response relative to (60)Co exists for photon energies below 200-300 keV. Comparison with the results from the literature indicates that using similar protocols for annealing and read-out, dosimeters of different makes (TLD-100, MTS-N) differ in relative detector response. Though universality of the results has not been proven and further investigation is needed, it is anticipated that with the use of strict protocols for annealing and read-out, it will be possible to determine correction factors that can be used to reduce uncertainties in dose measurements around brachytherapy sources at photon energies where primary standards for absorbed dose to water are not available.

Place, publisher, year, edition, pages
American Association of Physicists in Medicine , 2011. Vol. 38, no 10, 5539-5550 p.
Keyword [en]
LiF:Mg, Ti TLD, dosimetry, detector response, efficiency, x-ray energy spectra, brachytherapy
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:liu:diva-71792DOI: 10.1118/1.3633892ISI: 000295617400029OAI: oai:DiVA.org:liu-71792DiVA: diva2:454001
Note
Funding Agencies|Swedish Cancer foundation (CF)|10 0512|Swedish Radiation Protection Authority||Linkoping University|T2.J06|Available from: 2011-11-04 Created: 2011-11-04 Last updated: 2017-12-08

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Carlsson Tedgren, ÅsaHedman, AngelicaAlm Carlsson, Gudrun

Search in DiVA

By author/editor
Carlsson Tedgren, ÅsaHedman, AngelicaAlm Carlsson, Gudrun
By organisation
Radiation PhysicsFaculty of Health SciencesDepartment of Radiation Physics UHLCenter for Medical Image Science and Visualization, CMIV
In the same journal
Medical physics (Lancaster)
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 111 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf