liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Timing and sizing of investments in industrial processes– the use of an optimization tool
Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.ORCID iD: 0000-0001-7798-0471
Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
2011 (English)In: ECOS 2010 Volume IV (Power plants and Industrial processes): Proceedings of ECOS 2010 Conference in Lausanne / [ed] Daniel Favrat, MER Francois Maréchal, 2011Conference paper, Published paper (Refereed)
Abstract [en]

Investments of different kinds are vital for industries to stay competitive. However, there are several issues that need to be considered before investing, e.g. the timing and size of the investment. In this paper a methodology is presented for analysing investments form the point of view of optimal size and timing. The energy systems optimization tool reMIND is used as the basis of the modelling, and has been used in several industrial energy systems studies for various purposes. reMIND is based on Mixed Integer Linear Programming (MILP) and has been further developed to consider investments of different kinds. The different constraints needed to model the investment properly are presented together with the variables included in the objective function. A simple case study is also included to illustrate how the method is used. The results from the case study show that the timing and size of the different investments change, depending on the size of the proposed increase in production rate.

Place, publisher, year, edition, pages
2011.
Keywords [en]
Energy efficiency, Investments, MILP, Optimization
National Category
Engineering and Technology Energy Engineering
Identifiers
URN: urn:nbn:se:liu:diva-71876ISBN: 145630318X (print)ISBN: 9781456303181 (print)OAI: oai:DiVA.org:liu-71876DiVA, id: diva2:455161
Conference
23rd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, 14-17 June, in Lausanne, Switzerland
Available from: 2011-11-09 Created: 2011-11-09 Last updated: 2020-10-19
In thesis
1. Combining simulation and optimization for improved decision support on energy efficiency in industry
Open this publication in new window or tab >>Combining simulation and optimization for improved decision support on energy efficiency in industry
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Industrial production systems in general are very complex and there is a need for decision support regarding management of the daily production as well as regarding investments to increase energy efficiency and to decrease environmental effects and overall costs. Simulation of industrial production as well as energy systems optimization may be used in such complex decision-making situations.

The simulation tool is most powerful when used for design and analysis of complex production processes. This tool can give very detailed information about how the system operates, for example, information about the  disturbances that occur in the system, such as lack of raw materials, blockages or stoppages on a production line. Furthermore, it can also be used to identify bottlenecks to indicate where work in process, material, and information are being delayed.

The energy systems optimization tool can provide the company management additional information for the type of investment studied. The tool is able to obtain more basic data for decision-making and thus also additional information for the production-related investment being studied. The use of the energy systems optimization tool as investment decision support when considering strategic investments for an industry with complex interactions between different production units seems greatly needed. If not adopted and used, the industry may face a risk of costly reinvestments.

Although these decision-making tools individually give good results, the possibility to use them in combination increases the reliability of the results, enhances the possibility to find optimal solutions, promises improved analyses, and a better basis for decisions in industry. The energy systems optimization tool can be used to find the optimal result and the simulation tool can be used to find out whether the solution from the optimization tool is possible to run at the site.

In this thesis, the discrete event simulation and energy systems optimization tools have been combined. Three Swedish industrial case studies are included: The new foundry at Volvo Powertrain in Skövde, Arla Foods dairy in Linköping and the SKF foundry in Katrineholm. Results from these cases show possibilities to decrease energy use and idling, to increase production, to combine existing and new production equipment and to decrease loss of  products.

For an existing industrial system, it is always preferable to start with the optimization tool reMIND rather than the simulation tool – since it takes less time to build the optimization model and obtain results than it does to build the corresponding simulation modeling. While, for a non-existent system, it is in general a good idea to use both the simulation and the optimization tool reMIND simultaneously, because there are many uncertain data that are difficult to estimate, by using only one of them. An iterative working process may follow where both tools are used.

There is a need for future work to further develop structured working processes and to improve the model to e.g. take production related support processes into account. To adapt the results in industries, improve the user friendliness of the tool and the understanding of the underlying modeling developments of the optimization tool reMIND will be necessary.

Abstract [sv]

Industriella system i allmänhet är mycket komplexa och det finns ett behov av beslutsstöd vid hantering av den dagliga produktionen, liksom beslut om investeringar för att öka energieffektiviteten och minska miljöpåverkan och kostnader. Simulering av industriell produktion och energisystemoptimering kan användas som beslutsstöd i sådana komplexa beslutssituationer.

Simuleringsverktyg är mest kraftfullt när det används för design och analys av komplexa produktionsprocesser. Verktyget kan ge mycket detaljerad information om hur systemet fungerar, till exempel information om de störningar som inträffar i systemet såsom brist på råvaror, blockeringar eller avbrott på en produktionslinje. Dessutom kan verktyget användas för att identifiera flaskhalsar för att indikera var arbete, material och information är försenade.

Energisystemoptimeringsverktyget kan ge företagsledningen ytterligare information om en eventuell studerad investering. Verktyget kan ge mer underlag för att fatta beslut och därmed ge mer information för den produktionsrelaterade investeringen som studeras. Behovet av användningen av energisystemoptimeringsverktyg som investeringsbeslutsstöd när man överväger strategiska investeringar för en industri med komplexa interaktioner mellan olika produktionsenheter bedöms vara stort. Om inte kan industrin istället möta en risk för kostsamma reinvesteringar.

Även om dessa verktyg kan vara beslutsstöd var för sig och ge bra resultat, så medföljer möjligheten att kombinera dessa verktyg att tillförlitligheten av resultaten ökar, såväl som möjligheten att hitta optimala lösningar, bättre analyser och ett bättre underlag för beslut inom industrin. Optimeringsverktyget kan användas för att hitta det optimala resultatet och simuleringsverktyg kan användas för att ta reda på om lösningen från optimeringsverktyget är möjlig att realisera i verklig drift.

I den här avhandlingen har diskret händelsestyrd simulering och energisystemoptimeringsverktyg kombinerats. Tre svenska industriella fallstudier är inkluderade: Volvo Powertrains nya gjuteri i Skövde, Arla Foods mejeri i Linköping och SKF-gjuteriet i Katrineholm. Resultat från dessa fall visar på möjligheterna att minska energianvändningen och tomgångsförlusterna, att öka produktionen, att kombinera ny och befintlig produktionsutrustning på ett effektivare sätt, och att minska kassation av produkter.

För ett befintligt industriellt system är det alltid mer effektivt att börja med optimeringsverktyget reMIND snarare än simuleringsverktyg - eftersom det tar mindre tid att bygga en optimeringsmodell och få resultat, än det gör för att bygga en motsvarande simuleringsmodell. För ett icke-existerande system är det i allmänhet ett effektivare tillvägagångssätt att använda både simulerings och optimeringsverktyg reMIND samtidigt, eftersom det finns många osäkra data som är svåra att uppskatta, med hjälp av endast ett av verktygen. En iterativ arbetsprocess kan följa där båda verktyg används.

Det finns ett behov av fortsatt arbete bl. a. av att utveckla strukturerade arbetssätt och att kunna integrera produktionsrelaterade stödprocesser i modelleringen. För att anpassa resultaten för industrin, och förbättra användarvänligheten av verktyget, utvecklingen av optimeringsverktyget reMIND kommer att behövas.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2012. p. 69
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1483
Keywords
Energy efficiency, Integration, Optimization, Simulation
National Category
Energy Systems
Identifiers
urn:nbn:se:liu:diva-84643 (URN)978-91-7519-757-9 (ISBN)
Public defence
2012-10-30, C3, hus C, Campus Valla, Linköpings universitet, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2012-10-16 Created: 2012-10-16 Last updated: 2020-10-19Bibliographically approved

Open Access in DiVA

fulltext(1804 kB)127 downloads
File information
File name FULLTEXT01.pdfFile size 1804 kBChecksum SHA-512
3de002829369e55186132e88deaca926c4c0092232f4c8e0c1e02f5d2a8ac74189bd9eb2addb34c2abd0980866e211967def8e69827225f2bd4f9a7369dc9e35
Type fulltextMimetype application/pdf

Authority records

Karlsson, MagnusMardan, Nawzad

Search in DiVA

By author/editor
Karlsson, MagnusMardan, Nawzad
By organisation
Energy SystemsThe Institute of Technology
Engineering and TechnologyEnergy Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 127 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 703 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf