liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
CF(x): A first-principles study of structural patterns arising during synthetic growth
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.ORCID iD: 0000-0001-9402-1491
Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.ORCID iD: 0000-0002-9464-5111
Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.ORCID iD: 0000-0002-2837-3656
2011 (English)In: Chemical Physics Letters, ISSN 0009-2614, E-ISSN 1873-4448, Vol. 516, no 1-3, 62-67 p.Article in journal (Refereed) Published
Abstract [en]

Structural and bonding patterns arising from the incorporation of fluorine atoms in a graphene-like network relevant to the deposition of carbon fluoride (CF(x)) films were addressed by first-principles calculations. We find that large N-member (N = 8-12) rings, defects by sheet branching, and defects associated with bond rotation pertain to CF(x). The cohesive energy gains associated with these patterns are similar to 0.2-0.4 eV/at., which is similar to those for a wide range of defects in other C-based nanostructured solids. Fullerene-like CF(x) is predicted for F concentrations below similar to 10 at.%, while CF(x) compounds with higher F content are predominantly amorphous or polymeric.

Place, publisher, year, edition, pages
Elsevier , 2011. Vol. 516, no 1-3, 62-67 p.
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-72251DOI: 10.1016/j.cplett.2011.09.045ISI: 000296582400011OAI: oai:DiVA.org:liu-72251DiVA: diva2:458817
Note

Funding Agencies|Swedish Governmental Agency for Innovation Systems (VINNOVA)||European Research Council (ERC)||

Available from: 2011-11-24 Created: 2011-11-24 Last updated: 2017-12-08
In thesis
1. Carbon based Thin Films Prepared by HiPIMS and DCMS
Open this publication in new window or tab >>Carbon based Thin Films Prepared by HiPIMS and DCMS
2012 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

The present thesis focuses on carbon based thin films prepared by high power impulse magnetron sputtering (HiPIMS) and direct current magnetron sputtering (DCMS). The properties of such thin films can be tailored to an extensive variety; the film microstructure, for example, ranges in the presented work from fully amorphous, graphitic films to fullerene like (FL). Consequently, the applications of these films migh be as wide spread as their properties.

Carbon nitride (CNx, 0 < x < 0.20) as well as carbon fluoride (CFx 0.16 < x < 0.35)thin films were synthesized in an industrial deposition chamber by reactive sputtering  ofgraphite in an Ar/N2 and Ar/CF4 ambient. In order to gain a better understanding of thegrowth processes the C/Ar/N2 and the C/Ar/CF4 plasma was investigated by ion massspectroscopy at room temperature. Further understanding in this context gave thedetailed evaluation of target current and target voltage waveforms, acquired whengraphite was sputtered in HiPIMS mode. First principle calculations were carried out forthe growth of CFx and gave additional grasp about the most probable plasma precursorsas well as structure defining defects. Data gained from these characterisations of thedeposition processes were successfully related to the film properties. In order to linkdifferent process parameters to film properties, the synthesized films werecharacterized with regards to their thickness and deposition rate (secondary electronmicroscopy, SEM), chemical composition (elastic recoil detection analysis, ERDA and xrayphotoelectron spectroscopy, XPS), the chemical bonding (XPS), microstructure (transmission electron spectroscopy, TEM and selected area electron diffraction, SAED).Another part on thin film characterization comprised measurements for possibleapplications. For this, mainly nanoindentation and surface energy measurements wereperformed.

Application-related measurements revealed a hardness of up to 23 GPa at high elastic recoveries of ~ 90 % for CNx (x = 0.1) films that exhibited a weakly pronounced fullerene like structure. The hardness correlated with the microstructure and N incorporation rate of the thin film. Evidence by TEM for an increased amount of N intercalations in CNx HiPIMS thin films is supported by ion mass spectroscopic measurements. As expected, higher ion particle energies as well as amounts particularly for C+ and N+ were measured in the reactive HiPIMS plasma.

CFx thin films were found to show surface energies equivalent to superhydrophobic material for x > 0.26 while such films were polymeric in nature accounting for hardnesses below 1 GPa. Whereas, an amorphous structure for carbon-based films with fluorine contents ranging between 16 % and 23 % was observed. For such films, the hardness increased with decreasing fluorine content and ranged between 16 GPa and 4 GPa.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2012. 58 p.
Series
Linköping Studies in Science and Technology. Thesis, ISSN 0280-7971 ; 1521
National Category
Natural Sciences
Identifiers
urn:nbn:se:liu:diva-74748 (URN)LIU-TEK-LIC-2012:6 (Local ID)978-91-7519-949-8 (ISBN)LIU-TEK-LIC-2012:6 (Archive number)LIU-TEK-LIC-2012:6 (OAI)
Presentation
2012-03-02, Planck, Fysikhuset, Campus Valla, Linköpings universitet, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2012-02-07 Created: 2012-02-07 Last updated: 2016-08-31Bibliographically approved
2. Carbon Nitride and Carbon Fluoride Thin Films Prepared by HiPIMS
Open this publication in new window or tab >>Carbon Nitride and Carbon Fluoride Thin Films Prepared by HiPIMS
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The present thesis focuses on carbon based thin films prepared by high power impulse magnetron sputtering (HiPIMS) and direct current magnetron sputtering (DCMS). Carbon nitride (CNx: 0 < x < 0.20) as well as carbon fluoride (CFx: 0.16 < x < 0.35) thin films were synthesized in an industrial deposition chamber by reactive magnetron sputtering of graphite in Ne/N2, Ar/N2, Kr/N2, Ar/CF4, and Ar/C4F8 ambients. In order to increase the understanding of the deposition processes of C in the corresponding reactive gas mixture plasmas, ion mass spectroscopy was carried out. A detailed evaluation of target current and target voltage waveforms was performed when graphite was sputtered in HiPIMS mode. First principle calculations targeting the growth of CFx thin films revealed most probable film forming species as well as CFx film structure defining defects. In order to set different process parameters into relation with thin film properties, the synthesized carbon based thin films were characterized with regards to their chemical composition, chemical bonding, and microstructure. A further aspect was the thin film characterization for possible applications. For this, mainly nanoindentation and contact angle measurements were performed. Theoretical calculations and the results from the characterization of the deposition processes were successfully related to the thin film properties.

The reactive graphite/N2/inert gas HiPIMS discharge yielded high ion energies as well as elevated C+ and N+ abundances. Under such conditions, amorphous CNx thin films with hardnesses of up to 40 GPa were deposited. Elastic, fullerene like CNx thin films, on the other hand, were deposited at increased substrate temperatures in HiPIMS discharges exhibiting moderate ion energies. Here, a pulse assisted chemical sputtering at the target and the substrate was found to support the formation of a fullerene-like microstructure.

CFx thin films were found to have surface energies equivalent to super-hydrophobic materials for x > 0.26 while such films were polymeric in nature accounting for hardnesses below 1 GPa. Whereas, an amorphous structure for carbon-based films with fluorine contents ranging between 16 % and 23 % was observed. For those films, the hardness increased with decreasing fluorine content and ranged between 16 GPa and 4 GPa. The HiPIMS process in fluorinecontaining atmosphere was found to be a powerful tool in order to change the surface properties of carbon based thin films.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2013. 82 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1512
National Category
Natural Sciences
Identifiers
urn:nbn:se:liu:diva-90912 (URN)978-91-7519-642-8 (ISBN)
Public defence
2013-05-08, Planck, Fysikhuset, Campus Valla, Linköpings universitet, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2013-04-08 Created: 2013-04-08 Last updated: 2016-08-31Bibliographically approved
3. Nanostructured carbon-based thin films: prediction and design
Open this publication in new window or tab >>Nanostructured carbon-based thin films: prediction and design
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Carbon-based thin films are a vast group of materials of great technological importance. Thanks to the different bonding options for carbon, a large variety of structures (from amorphous to nanostructured) can be achieved in the process of film synthesis. The structural diversity increases even more if carbon is combined with relatively small quantities of atoms of other elements. This results in a set of materials with many different interesting properties for a wide range of technological applications.

This doctoral thesis is about nanostructured carbon-based thin films. In particular, the focus is set on theoretical modeling, prediction of structural features and design of sulfo carbide (CSx) and carbon fluoride (CFx) thin films.

The theoretical approach follows the synthetic growth concept (SGC) which is based on the density functional theory. The SGC departure point is the fact that the nanostructured films of interest can be modeled as assemblies of low dimensional units (e.g., finite graphene-like model systems), similarly to modeling graphite as stacks of graphene sheets. Moreover, the SGC includes a description of the groups of atoms that act as building blocks (i.e., precursors) during film deposition, as well as their interaction with the growing film.

This thesis consists of two main parts:

Prediction: In this work, I show that nanostructured CSx thin films can be expected for sulfur contents up to 20 atomic % with structural characteristics that go from graphite-like to fullerene-like (FL). In the case of CFx thin films, a diversity of structures are predicted depending on the fluorine concentration. Short range ordered structures, such as FL structure, can be expected for low concentrations (up to 5 atomic %). For increasing fluorine concentration, diamond-like and polymeric structures should predominate. As a special case, I also studied the ternary system CSxFy. The calculations show that CSxFy thin films with nanostructured features should be possible to synthesize at low sulfur and fluorine concentrations and the structural characteristics can be described and explained in terms of the binaries CSx and CFx.

Design: The carbon-based thin films predicted in this thesis were synthesized by magnetron sputtering. The results from my calculations regarding structure and composition, and analysis of precursors (availability and role during deposition process) were successfully combined with the experimental techniques in the quest of obtaining films with desired structural features and understanding their properties.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2015. 79 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1696
Keyword
carbon, carbon-based, thin films, fullerene-like, modeling, dft
National Category
Condensed Matter Physics Nano Technology
Identifiers
urn:nbn:se:liu:diva-121021 (URN)10.3384/diss.diva-121021 (DOI)978-91-7685-976-6 (ISBN)
Public defence
2015-10-16, Planck, Fysikhuset, Campus Valla, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2015-09-04 Created: 2015-09-02 Last updated: 2016-08-31Bibliographically approved

Open Access in DiVA

fulltext(458 kB)371 downloads
File information
File name FULLTEXT01.pdfFile size 458 kBChecksum SHA-512
cdcdcc2f18c3905491b633318c79ff76cc4361aa37a2c3bbaeee3d630b0d8145599fb906f9b4ccbda8c360c184aa0f23800d23f08fae23457bd1b7a149ed2cef
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records BETA

Kostov Gueorguiev, GueorguiGoyenola, CeciliaSchmidt, SusannHultman, Lars

Search in DiVA

By author/editor
Kostov Gueorguiev, GueorguiGoyenola, CeciliaSchmidt, SusannHultman, Lars
By organisation
Thin Film PhysicsThe Institute of TechnologyDepartment of Physics, Chemistry and Biology
In the same journal
Chemical Physics Letters
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 371 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 264 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf