liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Genetic MRF Model Optimization for Real-Time Victim Detection in Search and Rescue
University of Freiburg.
University of Freiburg.
2007 (English)In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), IEEE conference proceedings, 2007, 3025-3030 p.Conference paper (Refereed)
Abstract [en]

One primary goal in rescue robotics is to deploy a team of robots for coordinated victim search after a disaster. This requires robots to perform subtasks, such as victim detection, in real-time. Human detection by computationally cheap techniques, such as color thresholding, turn out to produce a large number of false-positives. Markov Random Fields (MRFs) can be utilized to combine the local evidence of multiple weak classifiers in order to improve the detection rate. However, inference in MRFs is computational expensive. In this paper we present a novel approach for the genetic optimizing of the building process of MRF models. The genetic algorithm determines offline relevant neighborhood relations with respect to the data, which are then utilized for generating efficient MRF models from video streams during runtime. Experimental results clearly show that compared to a Support Vector Machine (SVM) based classifier, the optimized MRF models significantly reduce the false-positive rate. Furthermore, the optimized models turned out to be up to five times faster then the non-optimized ones at nearly the same detection rate.

Place, publisher, year, edition, pages
IEEE conference proceedings, 2007. 3025-3030 p.
National Category
URN: urn:nbn:se:liu:diva-72560DOI: 10.1109/IROS.2007.4399006ISBN: 978-1-4244-0912-9 (print)OAI: diva2:459925
Artificial Intelligence & Integrated Computer Systems
Available from: 2011-11-29 Created: 2011-11-28 Last updated: 2011-12-06Bibliographically approved

Open Access in DiVA

fulltext(1927 kB)132 downloads
File information
File name FULLTEXT02.pdfFile size 1927 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Kleiner, Alexander

Search outside of DiVA

GoogleGoogle Scholar
Total: 132 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 119 hits
ReferencesLink to record
Permanent link

Direct link