liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The spectrum asymptotics for the Dirichlet problem in the case of the biharmonic operator in a domain with highly indented boundary
Linköping University, Department of Mathematics, Applied Mathematics. Linköping University, The Institute of Technology.
Institute for Problems in Mechanical Engineering, St Petersburg.
2011 (English)In: St. Petersburg Mathematical Journal, ISSN 1061-0022, E-ISSN 1547-7371, Vol. 22, no 6, 941-983 p.Article in journal (Refereed) Published
Abstract [en]

Asymptotic expansions are constructed for the eigenvalues of the Dirichlet problem for the biharmonic operator in a domain with highly indented and rapidly oscillating boundary (the Kirchhoff model of a thin plate). The asymptotic constructions depend heavily on the quantity γ that describes the depth O(εγ) of irregularity (ε is the oscillation period). The resulting formulas relate the eigenvalues in domains with close irregular boundaries and make it possible, in particular, to control the order of perturbation and to find conditions ensuring the validity (or violation) of the classical Hadamard formula.

Place, publisher, year, edition, pages
2011. Vol. 22, no 6, 941-983 p.
Keyword [en]
Biharmonic operator, Dirichlet problem, asymptotic expansions of eigenvalues, eigenoscillations of the Kirchhoff plate, rapid oscillation and nonregular perturbation of the boundary.
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:liu:diva-72766DOI: 10.1090/S1061-0022-2011-01178-1ISI: 000297091500007OAI: oai:DiVA.org:liu-72766DiVA: diva2:462241
Note
Funding agencies|University of Linkoping||Swedish Research Council (VR)||RFBR| 09-01-00759 |Available from: 2011-12-06 Created: 2011-12-06 Last updated: 2017-12-08

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Kozlov, Vladimir

Search in DiVA

By author/editor
Kozlov, Vladimir
By organisation
Applied MathematicsThe Institute of Technology
In the same journal
St. Petersburg Mathematical Journal
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 153 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf