liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Magnetic nanoscale laminates with tunable exchange coupling from first principles
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.ORCID iD: 0000-0001-5036-2833
Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
2011 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 84, no 22, 220403- p.Article in journal (Refereed) Published
Abstract [en]

The M(n+1)AX(n) (MAX) phases are nanolaminated compounds with a unique combination of metallic and ceramic properties, not yet including magnetism. We carry out a systematic theoretical study of potential magnetic MAX phases and predict the existence of stable magnetic (Cr(1-x)Mn(x))(2)AlC alloys. We show that in this system ferromagnetically ordered Mn layers are exchange coupled via nearly nonmagnetic Cr layers, forming an inherent structure of atomic-thin magnetic multilayers, and that the degree of disorder between Cr and Mn in the alloy can be used to tune the sign and magnitude of the coupling.

Place, publisher, year, edition, pages
American Physical Society , 2011. Vol. 84, no 22, 220403- p.
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-73313DOI: 10.1103/PhysRevB.84.220403ISI: 297763300001OAI: oai:DiVA.org:liu-73313DiVA: diva2:472079
Available from: 2012-01-03 Created: 2012-01-02 Last updated: 2017-12-08
In thesis
1. Materials Design from First Principles: stability and magnetism of nanolaminates
Open this publication in new window or tab >>Materials Design from First Principles: stability and magnetism of nanolaminates
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In this thesis, first-principles calculations within density functional theory are presented, with a principal goal to investigate the phase stability of so called Mn+1AXn (MAX) phases. MAX phases are a group of nanolaminated materials comprised of a transition metal (M), a group 12-16 element (A), and carbon or nitrogen (X). They combine ceramic and metallic characteristics, and phase stability studies are motivated by a search for new phases with novel properties, such as magnetism, and for the results to be used as guidance in attempted materials synthesis in the lab.

To investigate phase stability of a hypothetical material, a theoretical approach has been developed, where the essential part is to identify the set of most competing phases relative to the material of interest. This approach advance beyond more traditional evaluation of stability, where the energy of formation of the material is generally calculated relative to its single elements, or to a set of ad hoc chosen competing phases. For phase stability predictions to be reliable, validation of previous experimental work is a requirement prior to investigations of new, still hypothetical, materials. It is found that the predictions from the developed theoretical approach are consistent with experimental observations for a large set of MAX phases. The predictive power is thereafter demonstrated for the new phases Nb2GeC and Mn2GaC, which subsequently have been synthesized as thin films. It should be noted that Mn is used for the first time as sole M-element in a MAX phase. Hence, the theory is successfully used to find new candidates, and to guide experimentalists in their work on novel promising materials. Phase stability is also evaluated for MAX phase alloys. Incorporation of oxygen in different M2AlC phases are studied, and the results show that oxygen prefer different sites depending on M-element, through the number of available non-bonding M d-electrons. The theory also predicts that oxygen substituting for carbon in Ti2AlC stabilizes the material, which explains the  experimentally observed 12.5 at% oxygen (x = 0.5) in Ti2Al(C1-xOx).

Magnetism is a recently attained property of MAX phase materials, and a direct result of this Thesis work. We have demonstrated the importance of choice of magnetic spin configuration and electron correlations approximations for theoretical evaluation of the magnetic ground state of Cr2AC (A = Al, Ga, Ge). Furthermore, alloying Cr2AlC with Mn to obtain the first magnetic MAX phase have been theoretically predicted and experimentally verified. Using Mn2GaC as model system, Heisenberg Monte Carlo simulations have been used to explore also noncollinear magnetism, suggesting a large set of possible spin configurations (spin waves and spin spirals) to be further investigated in future theoretical and experimental work.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2014. 81 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1571
National Category
Natural Sciences
Identifiers
urn:nbn:se:liu:diva-104764 (URN)10.3384/diss.diva-104764 (DOI)978-91-7519-411-0 (ISBN)
Public defence
2014-03-14, Planck, Fysikhuset, Campus Valla, Linköpings universitet, Linköping, 09:15 (English)
Opponent
Supervisors
Available from: 2014-02-25 Created: 2014-02-25 Last updated: 2017-11-03Bibliographically approved

Open Access in DiVA

fulltext(450 kB)378 downloads
File information
File name FULLTEXT01.pdfFile size 450 kBChecksum SHA-512
492714178f1b228ca0d776cd66e190b6e898ac9c864528a750897212111e86b90c2fa39060a7aee4690d564b464af3e1b0ec039598bbcc23972df3ba2d09fc83
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records BETA

Dahlqvist, MartinAlling, BjörnAbrikosov, IgorRosén, Johanna

Search in DiVA

By author/editor
Dahlqvist, MartinAlling, BjörnAbrikosov, IgorRosén, Johanna
By organisation
Thin Film PhysicsThe Institute of TechnologyTheoretical Physics
In the same journal
Physical Review B. Condensed Matter and Materials Physics
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 378 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 438 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf