liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Assembly of Graphene Oxide and Au(0.7)Ag(0.3) Alloy Nanoparticles on SiO(2): A New Raman Substrate with Ultrahigh Signal-to-Background Ratio
Nanyang Technology University.
Nanyang Technology University.
Nanyang Technology University.
Nanyang Technology University.
Show others and affiliations
2011 (English)In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 115, no 49, 24080-24084 p.Article in journal (Refereed) Published
Abstract [en]

Resonance Raman spectroscopy (RRS) often suffers from the large fluorescence background which obscures the much weaker Raman scattering. To address this fundamental problem, a novel Raman substrate has been fabricated by adsorption of Au(0.7)Ag(0.3) alloy nanoparticles (NPs) on a graphene oxide (GO) coated SiO(2) surface, which offers both excellent Raman enhancement and fluorescence quenching. Our experimental data reveal that a Raman to fluorescence background intensity ratio of 1.6 can be obtained for a highly fluorescent dye like Alexa fluor 488. Moreover, we demonstrate that the Raman enhancement mainly originates from the Au(0.7)Ag(0.3) alloy NPs and that the fluorescence quenching mainly arises from the underlying functionalized GO (FGO) substrate.

Place, publisher, year, edition, pages
American Chemical Society , 2011. Vol. 115, no 49, 24080-24084 p.
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-73310DOI: 10.1021/jp208486mISI: 297609000008OAI: oai:DiVA.org:liu-73310DiVA: diva2:472089
Available from: 2012-01-03 Created: 2012-01-02 Last updated: 2017-12-08

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Liedberg, Bo

Search in DiVA

By author/editor
Liedberg, Bo
By organisation
Sensor Science and Molecular PhysicsThe Institute of Technology
In the same journal
The Journal of Physical Chemistry C
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 146 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf