liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Three-dimensional anisotropic adaptive filtering of projection data for noise reduction in cone beam CT
Stanford University.
Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Clinical Physiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Centre, Department of Clinical Physiology UHL.
Friedrich-Alexander University of Erlangen-Nuremberg.
Friedrich-Alexander University of Erlangen-Nuremberg.
Show others and affiliations
2011 (English)In: Medical physics (Lancaster), ISSN 0094-2405, Vol. 38, no 11, 5896-5909 p.Article in journal (Refereed) Published
Abstract [en]

Purpose: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain. Methods: 3D anisotropic adaptive filtering was used to process an ensemble of 2D x-ray views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability. Results: The adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidias CUDA Interface provided an 8.9-fold speed-up of the processing (from 1336 to 150 s). Conclusions: Adaptive anisotropic filtering has the potential to substantially improve image quality and/or reduce the radiation dose required for obtaining 3D image data using cone beam CT.

Place, publisher, year, edition, pages
American Association of Physicists in Medicine , 2011. Vol. 38, no 11, 5896-5909 p.
Keyword [en]
C-arm computed tomography (CT); low dose; noise; artifacts; image enhancement; hardware acceleration; GPU
National Category
Medical and Health Sciences
URN: urn:nbn:se:liu:diva-73594DOI: 10.1118/1.3633901ISI: 000296534000010OAI: diva2:474766
Available from: 2012-01-09 Created: 2012-01-09 Last updated: 2012-01-18

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Wigström, Lars
By organisation
Center for Medical Image Science and Visualization, CMIVClinical PhysiologyFaculty of Health SciencesDepartment of Clinical Physiology UHL
In the same journal
Medical physics (Lancaster)
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 24 hits
ReferencesLink to record
Permanent link

Direct link