liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Unsteady Flow through Valve Plate Restrictor in a Hydraulic Pump/Motor Unit
Linköping University, Department of Management and Engineering, Fluid and Mechanical Engineering Systems. Linköping University, The Institute of Technology.
Linköping University, Department of Management and Engineering, Fluid and Mechanical Engineering Systems. Linköping University, The Institute of Technology.
2010 (English)Manuscript (preprint) (Other academic)
Abstract [en]

Noise is a well known challenge in hydraulic systems. Hydrostatic machines are among the largest noise contributors in a hydraulic system.The noise from the machine originates from flow pulsations at the discharge and suction ports, as well as pulsations in piston forces and bending moments.

This article investigates the dynamic behaviour of unsteady flow through a valve plate in an axial piston pump. The proposed extension of the steady state restrictor equation includes a dynamic internal mass term and a resistance. The results from 1D model are validated with a 3D CFD model. Different valve plates’ configurations and pump sizes are easily simulated with the two simulation models. The simulation results show very good comparison with experimental tests. The proposed method is verified with a hydraulic pump application but it can probably also apply for original restrictors too.

Place, publisher, year, edition, pages
2010.
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-73980OAI: oai:DiVA.org:liu-73980DiVA: diva2:479589
Conference
2nd Annual Dynamic Systems and Control Conference October 12-14, Hollywood, CA, USA
Available from: 2012-01-18 Created: 2012-01-18 Last updated: 2012-01-18Bibliographically approved
In thesis
1. On Fluid Power Pump and Motor Design: Tools for Noise Reduction
Open this publication in new window or tab >>On Fluid Power Pump and Motor Design: Tools for Noise Reduction
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Noise and vibration are two of the main drawbacks with fluid power  systems. The increasing requirements concerning working environment as well as machines' impact on surroundings put components and systems to harder tests. The surrounding machines, e.g. combustion engines, have made considerable progress regarding the radiated noise. This allows the fluid power system's noise to become more prominent. Noise from fluid power systems has been a research topic for several decades and much improvement has been achieved. However, considerable potential for improvement still remains.

In addition to the legislation governing working environment, the machines tend to be used as more multi-quadrant machines, which require more flexible noise reduction features. One of the main benefits with fluid power is the high power density. To increase this value even more, the system's working pressure increases, which correlates with increased noise level.

The main source of noise is considered to be the pump and motor unit in the fluid power system. The noise can be divided into two parts: fluid-borne noise and structure-borne noise. The fluid borne noise derives from flow pulsation which is subsequently spread through pipeline systems to other parts of the fluid power systems. The flow pulsation is created due to the finite stiffness of oil and the limited number of pumping elements. The structure-borne noise generates directly from pulsating forces in the machine. The pulsating forces are mainly created by the pressure differences between high and low pressure ports.

Effective and accurate tools are needed when designing a quiet pump/motor unit. In this thesis simulation based optimisation is used with different objective functions including flow pulsation and pulsating forces as well as audible noise. The audible noise is predicted from transfer functions derived from measurements. Two kinds of noise reduction approaches are investigated; cross-angle in multi-quadrant machines and non-uniform placement of pistons. The simulation model used is experimentaly validated by source flow measurements. Also, source flow measurements with the source admittance method are investigated.

In addition, non-linear flow through a valve plate restrictor is investigated and the steady state restrictor equation is proposed to be extended by internal mass term.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2012. 130 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1417
National Category
Engineering and Technology
Identifiers
urn:nbn:se:liu:diva-73981 (URN)978-91-7519-994-8 (ISBN)
Public defence
2012-01-20, Sal A35, Hus A, Campus Valla, Linköpings universitet, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2012-01-18 Created: 2012-01-18 Last updated: 2012-01-18Bibliographically approved

Open Access in DiVA

No full text

Authority records BETA

Ericson, LiselottPalmberg, Jan-Ove

Search in DiVA

By author/editor
Ericson, LiselottPalmberg, Jan-Ove
By organisation
Fluid and Mechanical Engineering SystemsThe Institute of Technology
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 247 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf