liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Data processing for image-based chemical sensors: unsupervised region of interest selection and background noise compensation
University of Roma Tor Vergata.
University of Roma Tor Vergata.
University of Roma Tor Vergata.
Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
Show others and affiliations
2012 (English)In: Analytical and Bioanalytical Chemistry, ISSN 1618-2642, E-ISSN 1618-2650, Vol. 402, no 2, 823-832 p.Article in journal (Refereed) Published
Abstract [en]

Natural olfaction suggests that numerous replicas of small sensors can achieve large sensitivity. This concept of sensor redundancy can be exploited by use of optical chemical sensors whose use of image sensors enables the simultaneous measurement of several spatially distributed indicators. Digital image sensors split the framed scene into hundreds of thousands of pixels each corresponding to a portion of the sensing layer. The signal from each pixel can be regarded as an independent sensor, which leads to a highly redundant sensor array. Such redundancy can eventually be exploited to increase the signal-to-noise ratio. In this paper we report an algorithm for reduction of the noise of pixel signals. For this purpose, the algorithm processes the output of groups of pixels whose signals share the same time behavior, as is the case for signals related to the same indicator. To define these groups of pixels, unsupervised clustering, based on classification of the indicator colors, is proposed here. This approach to signal processing is tested in experiments on the chemical sensitivity of replicas of eight indicators spotted on to a plastic substrate. Results show that the groups of pixels can be defined independently of the geometrical arrangement of the sensing spots, and substantial improvement of the signal-to-noise ratio is obtained, enabling the detection of volatile compounds at any location on the distributed sensing layer.

Place, publisher, year, edition, pages
Springer Verlag (Germany) , 2012. Vol. 402, no 2, 823-832 p.
Keyword [en]
Optical sensors, Chemical sensors, Chemometrics/Statistics
National Category
Engineering and Technology
URN: urn:nbn:se:liu:diva-74851DOI: 10.1007/s00216-011-5521-2ISI: 000298645300025OAI: diva2:496571
Available from: 2012-02-10 Created: 2012-02-10 Last updated: 2012-02-10

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Filippini, DanielLundström, Ingemar
By organisation
Applied PhysicsThe Institute of TechnologyBiosensors and Bioelectronics
In the same journal
Analytical and Bioanalytical Chemistry
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 143 hits
ReferencesLink to record
Permanent link

Direct link