liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Influence of chemical composition and deposition conditions on microstructure evolution during annealing of arc evaporated ZrAlN thin films
Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology. Seco Tools AB, 737 82 Fagersta, Sweden.
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology. (Thin Film Physics)ORCID iD: 0000-0002-2837-3656
Show others and affiliations
2012 (English)In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, ISSN 0734-2101, E-ISSN 1520-8559, Vol. 30, no 3, 031504- p.Article in journal (Refereed) Published
Abstract [en]

The influence of substrate bias and chemical composition on the microstructure and hardness of arc evaporated Zr1−xAlxN films with 0.12 < x < 0.74 is investigated. A cubic ZrAlN phase is formed at low aluminum contents (x < 0.38) whereas for a high Al-content, above x=0.70, a single-phase hexagonal structure is obtained. For intermediate Al-contents, a two-phase structure is formed. The cubic structured films exhibit higher hardness than the hexagonal structured ones. A low bias results in N-rich films with a partly defect-rich microstructure while a higher substrate bias decreases the grain size and increases the residual stress in the cubic ZrAlN films. Recrystallization and out-diffusion of nitrogen from the lattice in the cubic ZrAlN films takes place during annealing at 800 C, which results in an increased hardness. The cubic ZrAlN phase is stable to annealing temperatures of 1000 C while annealing at higher temperature results in nucleation and growth of hexagonal AlN. In the high Al-content ZrAlN films, formation of ZrN- and AlN-rich domains within the hexagonal lattice during annealing at 1000 C improves the mechanical properties.

Place, publisher, year, edition, pages
American Vacuum Society , 2012. Vol. 30, no 3, 031504- p.
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:liu:diva-75172DOI: 10.1116/1.3698592ISI: 000303602800015OAI: oai:DiVA.org:liu-75172DiVA: diva2:504297
Note

funding agencies|VINN Excellence Center on Functional Nanoscale Materials (FunMat)||

Available from: 2012-02-20 Created: 2012-02-20 Last updated: 2017-12-07Bibliographically approved
In thesis
1. High temperature behavior of arc evaporated ZrAlN and TiAlN thin films
Open this publication in new window or tab >>High temperature behavior of arc evaporated ZrAlN and TiAlN thin films
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Hard coatings can extend the life time of a tool substantially and enable higher cutting speeds which increase the productivity in the cutting application. The aim with this thesis is to extend the understanding on how the microstructure and mechanical properties are affected by high temperatures similar to what a cutting tool can reach during operation.

Thin films of ZrAlN and TiAlN have been deposited using cathodic arc-evaporation. The microstructure of as-deposited and annealed films has been studied using electron microscopy and x-ray scattering. The thermal stability has been characterized by calorimetry and thermogravity and the mechanical properties have been investigated by  nanoindentation.

The microstructure of Zr1−xAlxN thin films was studied as a function of composition, deposition conditions, and annealing temperature. The structure was found to depend on the Al content where a low (x < 0.38) Al-content results in cubic-structured ZrAlN while for x > 0.70 the structure is hexagonal. For intermediate Al contents (0.38 < x < 0.70), a  nanocomposite structure with a mixture of cubic, hexagonal and amorphous phases is obtained.

The cubic ZrAlN phase transforms by nucleation and growth of hexagonal AlN when annealed above 900 C. Annealing of hexagonal ZrAlN thin films (x > 0.70) above 900 C causes formation of AlN and ZrN rich domains within the hexagonal lattice. Annealing of nanocomposite ZrAlN thin films results in formation of cubic ZrN and hexagonal AlN. The transformation is initiated by nucleation and growth of cubic ZrN at temperatures of 1100 C while the AlN-rich domains are still amorphous or nanocrystalline. Growth of hexagonal AlN is suppressed by the high nitrogen content of the films and takes place at annealing temperatures of 1400 C.

In the more well known TiAlN system, the initial stage of decomposition is spinodal with formation of cubic structured domains enriched in TiN and AlN. By a combination of in-situ xray scattering techniques during annealing and phase field simulations, both the microstructure that evolves during decomposition and the decomposition rate are found to depend on the composition. The results further show that early formation of hexagonal AlN domains during decomposition can cause formation of strains in the cubic TiAlN phase.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2012. 78 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1428
National Category
Natural Sciences
Identifiers
urn:nbn:se:liu:diva-75176 (URN)978-91-7519-956-6 (ISBN)
Public defence
2012-03-22, Planck, Fysikhuset, Campus Valla, Linköpings universitet, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2012-02-20 Created: 2012-02-20 Last updated: 2016-08-31Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Rogström, LinaJohansson, MatsGhafoor, NaureenHultman, LarsOdén, Magnus

Search in DiVA

By author/editor
Rogström, LinaJohansson, MatsGhafoor, NaureenHultman, LarsOdén, Magnus
By organisation
Nanostructured MaterialsThe Institute of TechnologyThin Film Physics
In the same journal
Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 324 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf