liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Human leukemic cell lines express a truncated intracellular 160 kDa ERBB2 receptor
Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
Linköping University, Department of Clinical and Experimental Medicine, Oncology. Linköping University, Faculty of Health Sciences.
Linköping University, Department of Clinical and Experimental Medicine, Experimental Hematology. Linköping University, Faculty of Health Sciences.
Linköping University, Department of Clinical and Experimental Medicine, Oncology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Oncology UHL.
(English)Manuscript (preprint) (Other academic)
Abstract [en]

It has recently been demonstrated that ERBB specific tyrosine kinase inhibitors display antineoplastic activity in human leukemic cell devoid of functional ERBB receptors. The present study was undertaken in order to identify any putative target for these drugs. Flow cytometry experiments demonstrate the presence of an immunoreactive ERBB2 protein of intracellular localization and Western blot analysis visualized an ERBB2 protein of approximately 160 kDa. Exposing leukemia cells to tunicamycin did not alter the size of the truncated ERBB2 protein. The ERBB2 gene was alternative spliced with an absence of exon 5 containing the start codon for the full-length protein. In conclusion we demonstrate a nonglycosylated 160 kDa ERBB2-receptor protein with an alternative in-frame start codon in human leukemia cell lines.

Keyword [en]
Leukemia, ERBB2-receptor, variant, glycosylation, exon
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:liu:diva-75548OAI: oai:DiVA.org:liu-75548DiVA: diva2:508125
Available from: 2012-03-07 Created: 2012-03-07 Last updated: 2012-03-07Bibliographically approved
In thesis
1. Canertinib-induced leukemia cell death signaling: effects of a pan-ERBB inhibitor
Open this publication in new window or tab >>Canertinib-induced leukemia cell death signaling: effects of a pan-ERBB inhibitor
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Acute myelogenous leukemia (AML) is the most common acute leukemia affecting adults, the second most frequent leukemia in children, and remains one of the most difficult to cure. Despite a substantial progress in understanding the pathogenesis of AML, general and rather unspecific cytostatic drugs such as cytarabine and anthracyclins still make up the cornerstones of therapy. Problems with these protocols include toxicity and the occurrence of resistance to the drugs in many patients. In order to extend the treatment options and ultimately improve survival for patients with leukemia it is imperative to increase the therapeutic arsenal with effective targeted therapies, preferentially with different mechanisms of action. AML due to a substantial heterogeneity between patients and within the clones in the same patient, as well as T-cell malignancies, are particularly difficult to treat since it is almost impossible to eradicate all leukemic stem cells using chemotherapy, thus there is a need to find more specific and effective treatments. Canertinib is a novel tyrosine kinase inhibitor developed for the treatment of certain solid cancers and has been designed to specifically inhibit all member of the ERBB-receptor family (ERBB1, ERBB2, ERBB3 and ERBB4). However, there are indications that canertinib has a broader specificity and it has not been tested on patients with leukemia.

The aim of this thesis was to investigate the anti-proliferative and pro-apoptotic effects and mechanisms of canertinib in human leukemia cells, and more specifically to clarify the cell death pathway and potential targets for the drug in these cells.

Canertinib treatment of leukemia cell lines resulted in an ERBB-independent induction of the intrinsic apoptotic pathway and activation of caspase-10, -9, and -8 as a consequence of Akt and Erk inhibition. In the human T-cell leukemia cell line Jurkat, the effects were associated to dephosphorylation of the lymphocyte-specific proteins, Lck and Zap-70. However, as full-length ERBB receptors were absent in leukemic cell lines other possible targets for canertinib were investigated. The FLT3 receptor, frequently mutated in AML, was discovered as a target since canertinib inhibited FLT3 autophosphorylation and kinase activity as well as downstream targets. The search for other possible proteins that might account for the effect exerted by canertinib, lead to the discovery of a truncated form of ERBB2 in human leukemic cells.

In conclusion, canertinib display promising anti-tumor effects on malignant hematopoietic cells and might be used in future studies in combination with conventional chemotherapy or other targeted therapies in the treatment of leukemia.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2012. 76 p.
Series
Linköping University Medical Dissertations, ISSN 0345-0082 ; 1289
National Category
Medical and Health Sciences
Identifiers
urn:nbn:se:liu:diva-75549 (URN)978-91-7519-983-2 (ISBN)
Public defence
2012-03-30, Berzeliussalen, Hälsouniversitetet, Campus US, Linköpings universitet, Linköping, 09:00 (Swedish)
Opponent
Supervisors
Available from: 2012-03-07 Created: 2012-03-07 Last updated: 2012-10-30Bibliographically approved

Open Access in DiVA

No full text

Authority records BETA

Trinks, CeciliaHolmlund, BirgittaJönsson, Jan-IngvarWalz, Thomas M.

Search in DiVA

By author/editor
Trinks, CeciliaHolmlund, BirgittaJönsson, Jan-IngvarWalz, Thomas M.
By organisation
Cell BiologyFaculty of Health SciencesOncologyExperimental HematologyDepartment of Oncology UHL
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 68 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf