Fault Diagnosis Based on Causal ComputationsShow others and affiliations
2012 (English)In: IEEE transactions on systems, man and cybernetics. Part A. Systems and humans, ISSN 1083-4427, E-ISSN 1558-2426, Vol. 42, no 2, p. 371-381Article in journal (Refereed) Published
Abstract [en]
This paper focuses on residual generation for model-based fault diagnosis. Specifically, a methodology to derive residual generators when nonlinear equations are present in the model is developed. A main result is the characterization of computation sequences that are particularly easy to implement as residual generators and that take causal information into account. An efficient algorithm, based on the model structure only, which finds all such computation sequences, is derived. Furthermore, fault detectability and isolability performances depend on the sensor configuration. Therefore, another contribution is an algorithm, also based on the model structure, that places sensors with respect to the class of residual generators that take causal information into account. The algorithms are evaluated on a complex highly nonlinear model of a fuel cell stack system. A number of residual generators that are, by construction, easy to implement are computed and provide full diagnosability performance predicted by the model.
Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE) , 2012. Vol. 42, no 2, p. 371-381
Keywords [en]
Causal computations, fault diagnosis, fuel cell stack (FCS) system, sensor placement
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:liu:diva-75895DOI: 10.1109/TSMCA.2011.2164063ISI: 000300512700008OAI: oai:DiVA.org:liu-75895DiVA, id: diva2:510573
2012-03-162012-03-162017-12-07