liu.seSearch for publications in DiVA
ReferencesLink to record
Permanent link

Direct link
Att hantera cellmetabolismens komplexitet : Meningsskapande genom visualisering och metaforer
2012 (Swedish)Doktorsavhandling, sammanläggning (Other academic)
Abstract [sv]

Den molekylära livsvetenskapen är ett av de mest snabbväxande fälten inom naturvetenskap. Biokemi är en aktör inom detta tvärvetenskapliga fält, tillsammans med bland annat cellbiologi och genetik. En konsekvens är att läroböckerna ständigt sväller i omfång. Ett exempel är den välkända läroboken ”Molecular biology of the cell” av Bruce Alberts och medarbetare, som sedan sin första upplaga 1983 till den senaste reviderade femte upplagan ökat från cirka 1000 till 1600 sidor, en ökning på cirka 60%. Samtidigt har olika typer av representationer av de molekylära livsprocesserna ökat i betydelse såväl för forskning som för undervisning, och både den ökade kunskapen och utvecklingen inom visualiseringstekniken har gett nya möjligheter till att illustrera detta komplexa område.

Cellmetabolismen utgör en central del av den molekylära livsvetenskapen och består av ett närmast ofattbart antal reaktioner som sker samtidigt i cellen. Representationer (både interna och externa) spelar en central roll i kommunikationen av detta komplexa område och valet av symboler och metaforer påverkar tolkningen av dessa. De kan underlätta förståelsen men även misstolkas och därigenom skapa fallgropar för studenter. ”Makrofiering” av processen påverkar därmed studenters meningsskapande. Denna ämnesdidaktiska avhandling avser att bidra till en ökad medvetenhet bland lärare om; 1) vilka lärandemål som kräver särskild omsorg i undervisning av cellmetabolismen samt 2) betydelsen av det visuella språket i exempelvis animationer för hur metabola processer tolkas och förstås.

Man kan beskriva min avhandling som ett strategiskt arbete som startade med att jag ringade in vilka lärandemål som undervisande universitetslärare anser vara viktiga inom ett av cellbiologins och biokemins centrala områden, cellmetabolismen. Därefter fortsatte arbetet med en insnävning mot en speciell metabolisk process (ATP-syntes i den oxidativa forsforyleringen), och därefter till att kartlägga tolkningar av en specifik animation av ATP-syntas. Det som genomgående jämförs är lärarnas respektive animatörens intentioner och studenternas förståelse och tolkningar. Både konceptuell förståelse och hur ett metaforiskt/symboliskt språk kan skapa olika tolkningar av en molekylär process. Vilka meddelanden når studenterna? Hur förstår de lärarnas mål med undervisningen och animatörens sätt att förmedla processen i animationen? Vad underlättar respektive försvårar kommunikationen?

Place, publisher, year, pages
Linköping: Linköping University Electronic Press, 2012. 103 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1430
National Category
Social Sciences
Identifiers
urn:nbn:se:liu:diva-76141 (URN)978-91-7519-954-2 (ISBN)oai:DiVA.org:liu-76141 (OAI)
Public defence
2012-03-23, K2, Kåkenhus, Campus Norrköping, Linköpings univeristet, Linköping, 13:15 (Swedish)
Opponent
Supervisors
Available from2012-03-28 Created:2012-03-28 Last updated:2013-09-12Bibliographically approved
List of papers
1. Learning Goals and Conceptual Difficulties in Cell Metabolism
Open this publication in new window or tab >>Learning Goals and Conceptual Difficulties in Cell Metabolism : An explorative study of university lectures' views
2012 (English)In: Chemistry Education Research and Practice, ISSN 1756-1108, Vol. 13, no 4, 447-461Artikel i tidskrift (Other academic) Published
Abstract [en]

The rapid development and increasing inter- and multi-disciplinarity of life sciences call for revisions of life science course curricula, recognizing (inter alia) the need to compromise between covering specific phenomena and general processes/principles. For these reasons there have been several initiatives to standardize curricula, and various authors have assessed general curricular requirements. The results have shown that teacher preferences strongly influence both topic arrangement and course content, and generating consensus among scientists and lecturers is challenging. Applying a somewhat different approach, we have focused on a limited part of the curriculum (cell metabolism). Using Delphi methodology, in four rounds of surveys we investigated phenomena that 15 experienced, practicing lecturers consider to be central aspects for students to learn in the cell metabolism module of an introductory university course.

The overall aim was to identify learning goals of special concern, i.e. aspects considered by the teachers to be both central and difficult for students to understand. Our informants emphasized learning goals of overarching and principal type, e.g. to be able to couple different system levels (from molecules to cells to organisms) and grasp the interactions between them. However, they also expect detailed knowledge, e.g. to know the structure of central biomolecules and metabolites. The main result of the study is a ranked list of learning goals of special concern in cell metabolism. We also identified both important learning goals and difficulties that have not been previously reported (even though they are covered by most textbooks), e.g. that energy production occurs in well-regulated steps and the necessity of proximity and common intermediates for coupled reactions.

Keyword
Concept inventories, Big ideas, Molecular life science, Higher Education, Delphi study
National Category
Social Sciences
Identifiers
urn:nbn:se:liu:diva-76138 (URN)10.1039/c2rp20035j (DOI)000314239700007 (ISI)
Available from2012-03-28 Created:2012-03-28 Last updated:2014-10-28Bibliographically approved
2. Assocationsverktyg som ett sätt att studera studenters diskussion kring naturvetenskapliga begrepp
Open this publication in new window or tab >>Assocationsverktyg som ett sätt att studera studenters diskussion kring naturvetenskapliga begrepp
2008 (Swedish)In: NorDiNa: Nordic Studies in Science Education, ISSN 1504-4556, Vol. 4, no 1, 35-47Artikel i tidskrift (Refereed) Published
Abstract [sv]

This article aims to describe a new tool, the association tool, to collect data of students- discussions on scientific concepts. We have tested the association tool in two different situations. In the first, the association tool was used by student teachers in group-work. The students (two groups, which con- sisted of two and three students respectively) were asked to associate ATP (adenosine triphosphate), a concept with which they are familiar, with other concepts. In the second situation, the association tool was used in an interview situation dealing with the concepts of energy and heat. Three student teachers were interviewed. Both situations were videotaped and the transcripts were analysed quali- tatively and quantitatively to show different ways of using the association tool. The association tool yielded rich data on the discussions of the concepts useinteractions in group-work and an interview situation.

National Category
Engineering and Technology
Identifiers
urn:nbn:se:liu:diva-44567 (URN)77109 (Local ID)77109 (Archive number)77109 (OAI)
Available from2009-10-10 Created:2009-10-10 Last updated:2012-03-28Bibliographically approved
3. Critical features in an biochemistry animation
Open this publication in new window or tab >>Critical features in an biochemistry animation : Designer's intention and students' interpretation
(English)Manuskript (preprint) (Other academic)
Abstract [en]

Various authors have investigated students’ interpretations of biochemistry visualizations, but none to our knowledge have compared the intentions of the visualizations’ design with students’ interpretations. This study contrasts an animator’s educational intentions for an animation visualizing ATP (adenosine triphosphate) synthesis, catalysed by the enzyme Fo/F1-ATP-synthase, with 43 university students’ interpretation of the animation. The aim was to identify symbolic expressions in the animation and assess how well they succeed or fail to communicate the intended learning object. We explored the animators’ intentions in a semi-structured interview. To analyse how the students observed and interpreted the animation we first collected individual written responses in a combined worksheet and questionnaire from the students who were using the animation as a thinking tool. Immediately thereafter we also recorded the students’ argumentation and reasoning in group discussions based on the same questions.’ In total, six key facets intentionally illustrated by the animator were successfully interpreted by the students: 1) The dynamics and movement in the protein 2) The conformational changes induced, 3) The driving force of the process (the proton gradient), 4) The causal sequence (coupling) in the process, 5) The cellular context and nature (protein) of the main actor and 6) The energy transfer. Four of the symbolic expressions chosen by the animator helped the students to interpret these facets of the process. Students’ successfully discerned the conformational change in the protein, the rotation of the catalytic part of the protein and the connection between the proton gradient and ATPsynthesis due to the transitory movement depicted in the animation. In addition, use of a ribbonmodel helped students to intuitively grasp that a protein was involved and the sub-microscopic nature of the process. However, a flash intentionally used to indicate the energy transfer associated with the formation of the phosphodiester bond, was misinterpreted by the students as a release of energy, instead of an energy transformation from mechanical to temporarily stored energy in a chemical bond. Further, only five students were able to predict the reversibility of the process from the animation.

Keyword
Visualizations Higher Education, Students’ misinterpretations, Student difficulties, ATP-synthase.
National Category
Engineering and Technology
Identifiers
urn:nbn:se:liu:diva-76139 (URN)
Available from2012-03-28 Created:2012-03-28 Last updated:2012-05-29Bibliographically approved
4. When metaphors come to life
Open this publication in new window or tab >>When metaphors come to life : at the interface of external representations, molecular processes and student learning
2012 (English)In: International Journal of Environmental and Science Education, ISSN 1306-3065, Vol. 7, no 4, 563-580Artikel i tidskrift (Refereed) Published
Abstract [en]

When studying the molecular aspect of the life sciences, learners must be introduced to somewhat inaccessible phenomena that occur at the sub-micro scale. Despite the difficulties, students need to be familiar with and understand the highly dynamic nature of molecular processes. Thus, external representations1 (ERs) can be considered unavoidable and essential tools for student learning. Besides meeting the challenge of interpreting external representations, learners also encounter a large array of abstract concepts2, which are challenging to understand (Orgill & Bodner, 2004). Both teachers and learners use metaphorical language as a way to relate these abstract phenomena to more familiar ones from everyday life. Scientific papers, as well as textbooks and popular science articles, are packed with metaphors, analogies and intentional expressions. Like ERs, the use of metaphors and analogies is inevitable and necessary when communicating knowledge concerning molecular phenomena. Therefore, a large body of published research related to metaphors concerns science teachers’ and textbook writers’ interpretation and use of metaphors (Harrison & Treagust, 2006). In this paper we present a theoretical framework for examining metaphorical language use in relation to abstract phenomena and external representations. The framework was verified by using it to analyse students’ meaning-making in relation to an animation representing the sub-microscopic and abstract process of ATP-synthesis in Oxidative Phosphorylation. We seek to discover the animator’s intentions while designing the animation and to identify the metaphors that students use while interacting with the animation. Two of these metaphors serve as examples of a metaphor analysis, in which the characteristics of metaphors are outlined. To our knowledge,  no strategies to identify and understand the characteristics, benefits, and potential pitfalls of particular metaphors have, to date, been presented in science education research. Our aspiration is to contribute valuable insights into metaphorical language use at the interface between external representations, molecular processes, and student learning.

Keyword
Affordance, Design of external representations, Higher education, Metaphors, Molecular phenomena
National Category
Social Sciences
Identifiers
urn:nbn:se:liu:diva-76140 (URN)
Available from2012-03-28 Created:2012-03-28 Last updated:2013-05-21Bibliographically approved

Open Access in DiVA

fulltext(2037 kB)672 downloads
File information
File name FULLTEXT01.pdfFile size 2037 kBChecksum SHA-512
36e0d54a1b22e72d61860778292a37ec985f962826a5dff9819af961672243f6aa3daa00810f02f43e78933211724c7b9b5687a830a9238748813e332744ae25
Typ fulltextMimetype application/pdf
cover(214 kB)45 downloads
File information
File name COVER01.pdfFile size 214 kBChecksum SHA-512
88f5d49ca519d43fef88924f31b1ebd273a7c70468489b3c0d90f08c03aa7eaaef8b9a2969caeb19ec36904f80ce6043d1b43288b14843cccdcdd05d4d82c96e
Typ coverMimetype application/pdf

Search in DiVA

By author/editor
Stadig Degerman, Mari
By organisation
Department of Science and TechnologyThe Institute of Technology
Social Sciences

Search outside of DiVA

GoogleGoogle Scholar
Totalt: 672 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available
Totalt: 602 hits
ReferencesLink to record
Permanent link

Direct link