liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Does non-orthogonal spectrum sharing in the same cell improve the sum-rate of wireless operators?
Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.ORCID iD: 0000-0002-7599-4367
2012 (English)In: Proceedings of the 13th IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2012, 6-10 p.Conference paper (Refereed)
Abstract [en]

We study non-orthogonal spectrum sharing to determine under what circumstances operators can gain by such sharing. To model the spectrum sharing, we use the multiple-input single-output (MISO) interference channel (IC) assuming that the operators transmit in the same band. For the baseline scenario of no sharing, we use the MISO broadcast channel (BC) assuming that the operators transmit in disjunct bands. For both the IC and BC, we give achievable (lower) and upper bounds on the maximum sum-rate. While these bounds are well-known we also propose a new fast algorithm for finding a lower bound on the sum-rate of the BC using linear beamforming.

We use the bounds to numerically evaluate the potential gain of non-orthogonal spectrum sharing. In this study we assume that the operators efficiently utilize all their spatial degrees of freedom. We will see that the gains from spectrum sharing under these circumstances are limited.

Place, publisher, year, edition, pages
2012. 6-10 p.
National Category
Communication Systems Telecommunications
URN: urn:nbn:se:liu:diva-76729DOI: 10.1109/SPAWC.2012.6292981ISI: 000320276200002ISBN: 978-1-4673-0970-7ISBN: 978-1-4673-0969-1ISBN: 978-1-4673-0971-4OAI: diva2:516462
The 13th IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 17 Jun - 20 Jun 2012, Cesme, Turkey
eLLIIT - The Linköping‐Lund Initiative on IT and Mobile CommunicationsKnut and Alice Wallenberg FoundationSwedish Research CouncilEU, FP7, Seventh Framework Programme, 248001
Available from: 2012-04-18 Created: 2012-04-18 Last updated: 2016-08-31
In thesis
1. The MISO Interference Channel as a Model for Non-Orthogonal Spectrum Sharing
Open this publication in new window or tab >>The MISO Interference Channel as a Model for Non-Orthogonal Spectrum Sharing
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The demand for wireless communications services has increased during the last decades. To meet this demand, there is a need for allocating larger frequency bands. However, most of the frequency bands (or spectrum) suitable for wireless communication are occupied and allocated to licensed systems. Long-term (order of years) contracts enforce the operators to use separate bands. Also, within an operator, neighboring cells have used separate frequency bands to avoid causing interference to each others' mobile users. The drawback of such operation is low spectral efficiency due to unused spectrum and low flexibility in the allocation of resources for the mobile users. To overcome these problems, so-called spectrum sharing has been proposed. The idea is that different operators (inter-operator spectrum sharing) or neighboring cells (intra-operator spectrum sharing) can borrow spectral resources from each other for short time frames (order of milliseconds). For each of these spectrum sharing scenarios, we can use either orthogonal or non-orthogonal spectrum sharing.

In orthogonal spectrum sharing, the operator that borrows the spectrum can use it exclusively. Hence, the operators will not cause interference to each others users. The drawback with orthogonal sharing is that it might not exploit all degrees of freedom or diversity in the wireless channels. In non-orthogonal spectrum sharing, two or more operators or neighboring cells of one operator, simultaneously use the same piece of spectrum at a given physical location. One drawback of such sharing is that the operators or base stations cause interference to each others' users. This can substantially degrade the performance of the mobile users. On the other hand, the flexibility increases and we can potentially increase the number of served users or the data rate of the users with non-orthogonal sharing.

In this thesis, we focus on the downlink of the non-orthogonal spectrum sharing scenario. We use the interference channel (IC) as a model to understand the impact of the interference and how the operations can be coordinated. An IC consists of $K$ transmitter (TX)-receiver (RX) pairs, e.g., base station-mobile user pairs, where each TX serves one RX. Since the TX-RX pairs operate simultaneously in the same frequency band, they causeinterference to each other. To suppress the interference, we can employ multiple antennas at the TXs. Then, the TXs are able to steer, or beamform, the radiated power such that they provide the intended RXs with strong signals and cause weak interference to the unintended RXs. The IC with multiple-antennas TXs and single-antenna RXs constitutes a multiple-input single-output (MISO) IC.

In the first part of this thesis, we gain understanding of the fundamental performance limits of the two-user MISO IC, i.e., there are two TX-RX pairs. We study various achievable rate regions and methods for computing them. The first contribution is on efficient computation of the outer boundary of the rate region when the TXs have instantaneous channel state information (CSI) and the receivers are capable to perform successive interference cancellation. We split the problem in to the four subproblems corresponding to the different combinations of decoding strategies (decode interference or treat it as noise). The optimization problems we solve are scalar and quasi-concave and can be solved either on closed form or by a numerical gradient ascend method. The second contribution is on the ergodic rate region with statistical CSI. We characterize the transmit covariance matrices which potentially yield points on the outer boundary of the rate region. Using these characterizations, we can reduce the search space in the design of the optimal transmit covariance matrices. The third contribution considers a slow-fading channel and provides four different definitions of outage rate regions. These definitions depend on whether there is instantaneous or statistical CSI and whether outage is declared individually or in common. In the two latter contributions, the RXs treat interference as noise.

The second part of this thesis addresses the resource allocation problem in a small cellular network. The first contribution considers the inter-operator spectrum sharing problem in a single cell. The results illustrate that if user selection is not possible and there are always users to serve for both operators, there is no gain of non-orthogonal spectrum sharing over orthogonal sharing. For the same setup, the second contribution considers the user selection problem. The base stations select one user each to serve. The computational complexity of optimal user selection is high. Therefore, we propose to use simple beamforming schemes in order to select a user pair. Once a pair is chosen, we use optimal beamforming. The performance loss of this algorithm, compared to using optimal beamforming vectors for the scheduling is negligible.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2014. 50 p.
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1555
National Category
Communication Systems
urn:nbn:se:liu:diva-100820 (URN)10.3384/diss.diva-100820 (DOI)978-91-7519-478-3 (print) (ISBN)
Public defence
2014-01-27, Visionen, Hus B, Campus Valla, Linköpings universitet, Linköping, 13:15 (English)
Available from: 2013-11-27 Created: 2013-11-12 Last updated: 2016-08-31Bibliographically approved

Open Access in DiVA

fulltext(298 kB)154 downloads
File information
File name FULLTEXT01.pdfFile size 298 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Lindblom, JohannesLarsson, Erik G.
By organisation
Communication SystemsThe Institute of Technology
Communication SystemsTelecommunications

Search outside of DiVA

GoogleGoogle Scholar
Total: 154 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 444 hits
ReferencesLink to record
Permanent link

Direct link