liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Effects of high and low 17β-estradiol doses on cerebral ischemia
Linköping University, Department of Clinical and Experimental Medicine, Clinical Chemistry. Linköping University, Faculty of Health Sciences.
Linköping University, Department of Clinical and Experimental Medicine, Clinical Chemistry. Linköping University, Faculty of Health Sciences.ORCID iD: 0000-0001-8813-0384
Linköping University, Department of Clinical and Experimental Medicine, Clinical Chemistry. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Clinical Chemistry.
Linköping University, Department of Clinical and Experimental Medicine, Clinical Chemistry. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Anaesthetics, Operations and Specialty Surgery Center, Department of Neurosurgery.
(English)Manuscript (preprint) (Other academic)
Abstract [en]

INTRODUCTION: Estrogens’ effects on cerebral ischemia have during the last two decades been the subject of intense research efforts. Notwithstanding this, the reasons that some studies indicate that estrogens are damaging while others show estrogen-induced neuroprotection has hitherto not been fully elucidated. Recent evidence indicates that discrepancies in hormone administration paradigms, resulting in highly different serum hormone concentrations, may account for this dichotomy. The current study was designed to test this  ypothesis.

METHODS: Sixty ovariectomized female rats were randomized into three groups differing in subsequent 17β-estradiol regimen (vehicle, low dose and high dose respectively). Following two weeks of treatment, focal cerebral ischemia was induced via an intraluminal filament middle cerebral artery occlusion (MCAo) method. All animals were subjected to a small functional testing battery, and three days after MCAo they were sacrificed for infarct size assessment.

RESULTS AND DISCUSSION: The hormone administration regimens significantly affected animal weights and feeding behavior, but infarct sizes did not differ between groups. Further, random intra-group variations in infarct size were too large to allow negative conclusions to be drawn. The large variation was possibly a consequence of too large occluding filament diameter in combination with that the animals were allowed to wake up during ongoing MCAo. After correcting the large variation, the hypothesis needs to be addressed anew.

Keyword [en]
Administration methods, Cerebral ischemia, Elevated body swing test, Estrogens, Hormesis, Silastic capsules, Slow-release pellets
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:liu:diva-77192OAI: oai:DiVA.org:liu-77192DiVA: diva2:525443
Available from: 2012-05-08 Created: 2012-05-08 Last updated: 2016-02-29Bibliographically approved
In thesis
1. The dose-dependent effects of estrogens on ischemic stroke
Open this publication in new window or tab >>The dose-dependent effects of estrogens on ischemic stroke
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Estrogens are a group of female sex hormones that in addition to central roles in reproductive functions also have profound impact on for example brain development, blood vessels, bone tissue, metabolism and the immune system. The dominant endogenous production sites for estrogens in females are the ovaries and adipose tissue, while exogenous sources include combined contraceptive hormone treatments and menopausal hormone therapy. A few decades ago, the observation that females in comparison to men seemed to be protected against cerebral ischemia, and that this benefit was partially lost during menopause, sparked the hypothesis that estrogens protect against stroke. This was later confirmed by epidemiological studies and a large number of experimental animal studies, which motivated extensive clinical trials in which estrogens and/or progestagens were administered with the intent to prevent degenerative conditions rather than to ameliorate menopausal symptoms. However, the results were generally disappointing. The largest study, the Women’s Health Initiative (WHI), was discontinued due to the observation of an increased risk of breast cancer, cardiovascular disease and stroke. In parallel, a small number of animal studies in which estrogens were shown to increase damage from cerebral ischemia were published, one of these originating from our laboratory. This was, despite the WHI outcome, a surprising result, since the vast majority of previous animal studies had demonstrated protective effects.

Therefore, in an attempt to explain the discordant results, Paper 1, and later Paper 4, of the current thesis were planned, in which four 17β-estradiol administration methods were tested. Substantial differences in serum hormone concentrations resulted from the different methods. Most importantly, the commercially available slow-release pellets used in our earlier experiments resulted in extremely high serum concentrations of 17β-estradiol. In Paper 2, 66 published studies that had investigated the effects of estrogens on stroke were meta-analyzed to pin-point the methodological reasons for the result dichotomy. Strikingly, in all six studies in which estrogens had produced damaging effects, the same type of slow-release pellets had been used, although these were used in a minority of the total number of studies. Paper 3 substantially strengthened the hypothesis that administration methods were crucial by showing that repeating the earlier experiment from our laboratory in which pellets had been used, but using a low-dose regimen instead, switched the estrogen effects from neurodamaging to neuroprotective. In Paper 5, an effort was made to challenge the assumption that the dose, and not the administration method per se, was the key factor, however this failed due to large intra-group infarct size variability.

The current thesis adds evidence to the notion that differences in administration methods and their resulting serum concentrations of 17β-estradiol constitute a major factor responsible for the dichotomous results in studies investigating estrogens’ effects on cerebral ischemia. Even though results from animal studies are difficult to extrapolate to humans, this has a bearing on the menopausal hormone therapy debate, indicating that the risk of stroke could be reduced if serum concentrations of estrogens are minimized.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2012. 92 p.
Series
Linköping University Medical Dissertations, ISSN 0345-0082 ; 1301
National Category
Medical and Health Sciences
Identifiers
urn:nbn:se:liu:diva-77193 (URN)978-91-7519-937-5 (ISBN)
Public defence
2012-06-05, Berzeliussalen, Ingång 65,, Campus US, Linköpings universitet, Linköping, 09:00 (Swedish)
Opponent
Supervisors
Available from: 2012-05-08 Created: 2012-05-08 Last updated: 2016-02-29Bibliographically approved

Open Access in DiVA

No full text

Authority records BETA

Ström, JakobIngberg, EdvinTheodorsson, ElvarTheodorsson, Annette

Search in DiVA

By author/editor
Ström, JakobIngberg, EdvinTheodorsson, ElvarTheodorsson, Annette
By organisation
Clinical ChemistryFaculty of Health SciencesDepartment of Clinical ChemistryDepartment of Neurosurgery
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 46 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf