liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On Cognition as Dynamical Coupling: An Analysis of Behavioral Attractor Dynamics
University of Skövde, School of Humanities and Informatics.
University of Skövde, School of Humanities and Informatics.
University of Skövde, School of Humanities and Informatics.
2008 (English)In: Adaptive Behavior, ISSN 1059-7123, E-ISSN 1741-2633, Vol. 16, no 2-3, 182-195 p.Article in journal (Refereed) Published
Abstract [en]

The interaction of brain, body, and environment can result in complex behavior with rich dynamics, even for relatively simple agents. Such dynamics are, however, often difficult to analyze. In this article, we explore the case of a simple simulated robotic agent, equipped with a reactive neurocontroller and an energy level, which the agent has been evolved to recharge. A dynamical systems analysis shows that a non-neural internal state (energy level), despite its simplicity, dynamically modulates the behavioral attractors of the agent—environment system, such that the robot's behavioral repertoire is continually adapted to its current situation and energy level. What emerges is a dynamic, non-deterministic, and highly self-organized action selection mechanism, originating from the dynamical coupling of four systems (non-neural internal states, neurocontroller, body, and environment) operating at very different timescales.

Place, publisher, year, edition, pages
Sage Publications, 2008. Vol. 16, no 2-3, 182-195 p.
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-77220DOI: 10.1177/1059712308089180OAI: oai:DiVA.org:liu-77220DiVA: diva2:525628
Available from: 2012-05-08 Created: 2012-05-08 Last updated: 2017-12-07Bibliographically approved
In thesis
1. Modeling the Role of Energy Management in Embodied Cognition
Open this publication in new window or tab >>Modeling the Role of Energy Management in Embodied Cognition
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The quest for adaptive and autonomous robots, flexible enough to smoothly comply with unstructured environments and operate in close interaction with humans, seems to require a deep rethinking of classical engineering methods. The adaptivity of natural organisms, whose cognitive capacities are rooted in their biological organization, is an obvious source of inspiration. While approaches that highlight the role of embodiment in both cognitive science and cognitive robotics are gathering momentum, the crucial role of internal bodily processes as foundational components of the biological mind is still largely neglected.

This thesis advocates a perspective on embodiment that emphasizes the role of non-neural bodily dynamics in the constitution of cognitive processes in both natural and artificial systems. In the first part, it critically examines the theoretical positions that have influenced current theories and the author's own position. The second part presents the author's experimental work, based on the computer simulation of simple robotic agents engaged in energy-related tasks. Proto-metabolic dynamics, modeled on the basis of actual microbial fuel cells for energy generation, constitute the foundations of a powerful motivational engine. Following a history of adaptation, proto-metabolic states bias the robot towards specific subsets of behaviors, viably attuned to the current context, and facilitate a swift re-adaptation to novel tasks. Proto-metabolic dynamics put the situated nature of the agent-environment sensorimotor interaction within a perspective that is functional to the maintenance of the robot's overall `survival'. Adaptive processes tend to convert metabolic constraints into opportunities, branching into a rich and energetically viable behavioral diversity.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2012. 116 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1455
National Category
Engineering and Technology
Identifiers
urn:nbn:se:liu:diva-77231 (URN)978-91-7519-882-8 (ISBN)
Public defence
2012-06-12, G109, hus G, Högskolan i Skövde, Skövde, 13:15 (English)
Supervisors
Available from: 2012-05-25 Created: 2012-05-08 Last updated: 2012-05-25Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text
In the same journal
Adaptive Behavior
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 36 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf