liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Patterning of polypyrrole trilayer actuators working in air for microrobotics
Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics. Linköping University, The Institute of Technology.ORCID iD: 0000-0002-2071-7768
University of Wollongong, Australia.
University of Wollongong, Australia.
University of Wollongong, Australia.
2012 (English)In: EuroEAP 2012 online proceedings, 2012Conference paper, Poster (with or without abstract) (Other academic)
Abstract [en]

Within the areas of cell biology, biomedicine and minimal invasive surgery, there is a need for soft and flexible manipulators for handling biological objects, such as single cells and tissues. Polypyrrole (PPy) trilayer actuators are an attracting option since they use low power, are soft and can be operated without the need of an external electrolyte. The PPy trilayer actuator is made of three layers laminated together: two outer two layers of PPy and a middle, insulating layer of polyvinylidene difluoride (PVDF) to separate the two electrodes and contain the electrolyte. To date, only simple, individual actuators as have been fabricated and characterized. For the applications mentioned previously there is a need to be able to also fabricate complex structures, comprising individual addressable microactuators, for instance, in the form of multi-degree of freedom legs and microrobotic grippers.

We have developed different microfabrication and patterning methods for both thick, membrane PVDF- and thin film PVDF-based trilayer actuators, which require different processing steps, thus extendeding our processing capabilities. We will present these new processing methods and initial articulated microactuator devices, i.e. actuators comprising individually controllable actuators/segments.

Place, publisher, year, edition, pages
2012.
Keyword [en]
polypyrrole, microactuator, microrobot
National Category
Textile, Rubber and Polymeric Materials
Identifiers
URN: urn:nbn:se:liu:diva-78451OAI: oai:DiVA.org:liu-78451DiVA: diva2:532756
Conference
EuroEAP 2012, 29-30 May, Potsdam, Germany
Available from: 2012-06-12 Created: 2012-06-12 Last updated: 2013-10-07

Open Access in DiVA

No full text

Authority records BETA

Jager, Edwin

Search in DiVA

By author/editor
Jager, Edwin
By organisation
Biosensors and BioelectronicsThe Institute of Technology
Textile, Rubber and Polymeric Materials

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 256 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf