liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Graphene-based Biosensor for Intracellular Glucose Measurements
Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
Acreo AB, Norrköping, Sweden.
Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
Abstract [en]

In this paper, we report a novel graphene-based glucose micro sensor for measuring intracellular glucose. A borosilicate glass capillary (0.7 um diameter) is coated first with a graphene ink and then with a graphene-enzyme conjugate. The functional groups, presumably on the edge plane of graphene, assist binding with the free amine terminals of the glucose oxidase enzyme to result in a better immobilization. The as-prepared graphene biosensor exhibits a glucose-dependent electrochemical potential difference versus an Ag/AgCl reference microelectrode. The potential difference is linear over the concentration range of interest (10–1000μM). The measured glucose concentration in human adipocytes by using our graphene based sensor is consistent with reported values of glucose concentration. This device demonstrates a simple technique to measure intracellular glucose concentration.

National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:liu:diva-78679OAI: oai:DiVA.org:liu-78679DiVA: diva2:534724
Available from: 2012-06-18 Created: 2012-06-18 Last updated: 2014-01-15Bibliographically approved
In thesis
1. Graphene and ZnO Nanostructures for Nano- Optoelectronic & Biosensing Applications
Open this publication in new window or tab >>Graphene and ZnO Nanostructures for Nano- Optoelectronic & Biosensing Applications
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

There has been a remarkable excitement in graphene research since the famous discovery in 2004 by isolating a monolayer with the help of scotch tape. Graphene, merely a single layer of carbon atoms, is progressively making inroads into a wide range of applications, from ballistic electronics to biosensors to flexible/transparent displays. Graphene is a matchless material that is strong, light, transparent, and an excellent conductor of heat and electricity. On the other hand, zinc oxide (ZnO) is a wide band semiconductor that demonstrates excellent electrical, optical, catalytic and sensing properties and has numerous applications in various fields. ZnO is a natural n-type semiconductor due to the presence of intrinsic defects such as Zn interstitials and O vacancies that also contribute strongly to optical emissions in the visible region.

The amalgamation of the exceptional properties of graphene with good semiconducting properties of ZnO can pave the way towards the realization of future devices (LED, biosensors, photovoltaics etc.).

In this thesis, graphene nanosheets and zinc oxide (ZnO) nanostructures have beensuccessfully synthesized by using chemical vapor deposition (CVD), vapor liquidsolid (VLS) or wet chemistry routines. These nanostructures were used to fabricatenano and optoelectronic devices, including field effect transistors (FETs), lightemitting diodes (LEDs), UV detectors and biosensors. Both nanomaterial’s propertiesand performances of the devices have been characterized and reported.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2012. 80 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1458
National Category
Natural Sciences
Identifiers
urn:nbn:se:liu:diva-78697 (URN)978-91-7519-869-9 (ISBN)
Public defence
2012-05-29, K3, Kåkenhus, Campus Norrköping, Linköpings universitet, Norrköping, 10:15 (English)
Opponent
Supervisors
Available from: 2012-06-18 Created: 2012-06-18 Last updated: 2014-01-15Bibliographically approved

Open Access in DiVA

No full text

Authority records BETA

ul Hasan, KamranAsif, Muhammad H.Nur, OmerWillander, MagnusFagerholm, SiriStrålfors, Peter

Search in DiVA

By author/editor
ul Hasan, KamranAsif, Muhammad H.Nur, OmerWillander, MagnusFagerholm, SiriStrålfors, Peter
By organisation
Department of Science and TechnologyThe Institute of TechnologyPhysics and ElectronicsCell BiologyFaculty of Health Sciences
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 349 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf