liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Degradation of aromatic compounds by micro-organisms in solid waste samples from landfills and landfill simulation reactors
Linköping University, The Tema Institute, Department of Water and Environmental Studies. Linköping University, Faculty of Arts and Sciences.
Linköping University, The Tema Institute, Department of Water and Environmental Studies. Linköping University, Faculty of Arts and Sciences.
Linköping University, The Tema Institute, Department of Water and Environmental Studies. Linköping University, Faculty of Arts and Sciences.
Linköping University, The Tema Institute, Department of Water and Environmental Studies. Linköping University, Faculty of Arts and Sciences.
(English)Manuscript (preprint) (Other academic)
Abstract [en]

The ability by micro-organisms developed in landfilled waste totransform phenol, dimethyl phthalate (DMP), aniline, tetrabromophthalic acid (TBPA), 3-chlorobenzoate (CB) and 2,4,6-trichlorophenol (TCP) was investigated using a method modified after ISO 17334. Forty-four solid waste samples from landfills and landfill simulation reactors (LSRs) were used. The LSRs were run over a five-year period and simulated acid and methanogenic landfill conditions. The biodegradability of each aromatic compound (0.5-0. 7 mM) was assayed over 100-200 days. The degradation capacity was monitored both by quantification of the aromatic compounds and by methane analysis

The degradation capacity for the halogenated aromatics was poor or completely lacking by the landfill inocula investigated showing that this kind of compounds might persist in landfill. TCP inhibited both the methanogenic and fermentative micro-flora present in the waste samples, however, in early LSR assays no inhibition was observed. Phenol and DMP was transformed to non aromatic products in most assays. The biodegradation capacity towards these compounds increased over time in the LSR studies i.e. the acid and early methanogenic land fill phases had no or poor degradation capacity. These results indicates that the earlymethanogcnic tlora developing in landfills and landfill simulation reactors is different from the one later established by being less efficient in transformation of aromatic compounds but also less sensitive to aryl halides.

National Category
Social Sciences Interdisciplinary
Identifiers
URN: urn:nbn:se:liu:diva-79139OAI: oai:DiVA.org:liu-79139DiVA: diva2:538425
Available from: 2012-06-29 Created: 2012-06-29 Last updated: 2012-06-29Bibliographically approved
In thesis
1. Anaerobic degradation of phenol and related aromatics
Open this publication in new window or tab >>Anaerobic degradation of phenol and related aromatics
2000 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Phenol and other simple aromatic compounds have been found in water leached from landfills, showing that these types of compounds could be either present in disposed waste, or released from it via transformation and degradation processes. Hence, the fate anddegradation potential of such compounds under landfilling conditions is of great concern. Therefore, using micro-organisms from landfills, I have investigated the anaerobic biodegradation of phenol, dimethyl phthalate, 3-chlorobenzoate, 2,4,6-trichlorophenol, tetrabromophthalic acid and aniline. The compounds were chosen to represent substrates of potentially important reactions in the transformation and degradation of aromatic compounds. 24 waste samples from landfills and a time series of samples taken over five years from fourlandfill simulation reactors (in all 20 waste samples) were used as sources of microorganisms. The capacity of these waste samples to degrade the halogenated aromatics was poor or completely absent, indicating that halogenated compounds could be more persistent inlandfills than in other previously investigated anaerobic environments. Phenol and dimethyl phthalate were more readily transformed by most landfill samples, but the degradation capacity was poorer in the landfill simulation experiments. Here the unique sampling series showed an increase in degradation capacity with time, indicating that one to two years is needed to allow a micro-flora capable of degrading aromatic compounds to develop. However, the landfill samples showed higher degradation potentials than the simulation reactor samples, even from the later stages.

A more extensive study designed to elucidate the phenol degradation pathway under anaerobic, fermenting conditions is also presented. Here, phenol was for the first time shown to be degraded to non-aromatic products in a non-methanogenic fermenting culture. The endproductsformed were benzoate, acetate and butyrate. The conversion of phenol to benzoate was proved to be an electron sink reaction, used during processes such as degradation of glucose and is a new example of the diversity of compounds that can used as electronsinks/ acceptors in anaerobic environments. The degradation pathway in the studied cultureproceeds via fom1ation of 4-hydroxybenzoate, 4-hydroxybenzoyl-CoA and benzoyl-CoA, and the activity of a CoA-transferase which activates 4-hydroxybenzoate was measured.

Place, publisher, year, edition, pages
Motala: Kanaltryckeriet, 2000. 61 p.
Series
Linköping Studies in Arts and Science, ISSN 0282-9800 ; 212
Keyword
Aromatic compunds, anaerobic degradation, Fysik, Kemi
National Category
Social Sciences Interdisciplinary
Identifiers
urn:nbn:se:liu:diva-32129 (URN)17988 (Local ID)91-7219-728-5 (ISBN)17988 (Archive number)17988 (OAI)
Public defence
2000-05-31, Sal Elysion, Hus-T, Universitetsområdet Valla, Linköping, 10:15 (English)
Opponent
Available from: 2009-10-09 Created: 2009-10-09 Last updated: 2014-08-27Bibliographically approved

Open Access in DiVA

No full text

Authority records BETA

Karlsson, AnnaNezirevic, DzenetaEjlertsson, JörgenSvensson, Bo H.

Search in DiVA

By author/editor
Karlsson, AnnaNezirevic, DzenetaEjlertsson, JörgenSvensson, Bo H.
By organisation
Department of Water and Environmental StudiesFaculty of Arts and Sciences
Social Sciences Interdisciplinary

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 92 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf