liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Particle simulation study of electron heating by counter-streaming ion beams ahead of supernova remnant shocks
Centre for Plasma Physics, Queen's University Belfast, UK .
Harvard-Smithsonian Center for Astrophysics, Cambridge, MA , USA .
Centre for Plasma Physics, Queen's University Belfast, UK .
ETSI Industriales, Universidad de Castilla-La Mancha, Ciudad Real, Spain .
Show others and affiliations
2012 (English)In: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 54, no 8, 085015- p.Article in journal (Refereed) Published
Abstract [en]

The growth and saturation of Buneman-type instabilities is examined with a particle-in-cell (PIC) simulation for parameters that are representative for the foreshock region of fast supernova remnant shocks. A dense ion beam and the electrons correspond to the upstream plasma and a fast ion beam to the shock-reflected ions. The purpose of the 2D simulation is to identify the nonlinear saturation mechanisms, the electron heating and potential secondary instabilities that arise from anisotropic electron heating and result in the growth of magnetic fields. We confirm that the instabilities between both ion beams and the electrons saturate by the formation of phase space holes by the beam-aligned modes. The slower oblique modes accelerate some electrons, but they cannot heat up the electrons significantly before they are trapped by the faster beam-aligned modes. Two circular electron velocity distributions develop, which are centred around the velocity of each ion beam. They develop due to the scattering of the electrons by the electrostatic wave potentials. The growth of magnetic fields is observed, but their amplitude remains low.

Place, publisher, year, edition, pages
Institute of Physics Publishing (IOPP), 2012. Vol. 54, no 8, 085015- p.
Keyword [en]
plasma, instability, simulation
National Category
Natural Sciences
URN: urn:nbn:se:liu:diva-79283DOI: 10.1088/0741-3335/54/8/085015OAI: diva2:540131
Swedish Research Council
Available from: 2012-07-07 Created: 2012-07-07 Last updated: 2012-08-13

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Dieckmann, Mark Eric
In the same journal
Plasma Physics and Controlled Fusion
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 58 hits
ReferencesLink to record
Permanent link

Direct link