liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Early stage spinodal decomposition and microstructure evolution in TiAlN: A combined in-situ SAXS and phase field study
Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
Abstract [en]

This paper describes in detail the microstructure and phase evolution in Ti0.33Al0.67N and Ti0.50Al0.50N coatings during isothermal annealing, studied by in-situ small angle x-ray scattering (SAXS), in combination with phase field simulations. We show that the isostructural spinodal decomposition occurs in two stages. During the initial stage, the phase segregation proceeds with a constant size of AlN- and TiN-rich domains with an experimentally measured radius of ~0.7 nm for 5 and 20 min at 900 and 850 °C respectively in the Ti0.50Al0.50N alloy. The length of  the initial stage depends on temperature as well as metal composition, and is shorter for the higher Al-content  coating. After the initial stage, the coherent cubic AlN- and TiN-rich domains coarsen. The coarsening process is kinetically limited by diffusion, which allowed us to estimate the diffusivity and activation energies of the metals to 1.4·10-7 m2s-1 and 3.14 eV at-1 respectively.

Keyword [en]
TiAlN, Phase-field simulations, Spinodal decomposition, SAXS, High energy x-ray diffraction, Coarsening
National Category
Ceramics
Identifiers
URN: urn:nbn:se:liu:diva-79607OAI: oai:DiVA.org:liu-79607DiVA: diva2:543917
Available from: 2012-08-10 Created: 2012-08-10 Last updated: 2016-08-31Bibliographically approved
In thesis
1. Phase field modeling of Spinodal decomposition in TiAlN
Open this publication in new window or tab >>Phase field modeling of Spinodal decomposition in TiAlN
2012 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

TiAlN  thin  films  are  used  commercially  in  the  cutting  tool  industry  as  wear protection  of  the  inserts.  During  cutting,  the  inserts  are  subjected  to  high temperatures (~ 900  ° C and sometimes higher). The  objective of this work is to simulate the material behavior at such high temperatures. TiAlN has been studied experimentally at least for two decades, but no microstructure simulations have so far been performed. In this thesis two models are presented, one based on regular solution and one that takes into account clustering effects on the thermodynamic data. 

Both  models  include  anisotropic  elasticity  and  lattice  parameters  deviation from  Vegard’s  law.  The  input  parameters  used  in  the  simulations  are ab  initio calculations and experimental data.Methods for extracting diffusivities and activation energies as well as Young’s modulus  from  phase  field  results  are  presented.  Specifically,  strains,  von  Mises stresses,  energies,  and  microstructure  evolution  have  been  studied  during  the spinodal  decomposition of  TiAlN. It  has  been  found  that  strains  and  stresses  are generated during the decomposition i.e. von Mises stresses ranging between 5 and 7.5  GPa  are  typically  seen.  The  stresses  give  rise  to  a  strongly  composition dependent  elastic  energy  that  together  with  the  composition  dependent  gradient energy   determine   the   decomposed   microstructure.   Hence,   the   evolving microstructure depends strongly on the global composition. Morphologies ranging from isotropic, round domains to entangled outstretched domains can be achievedby  changing  the  Al  content.  Moreover,  the  compositional  wavelength  of  the evolved  domains  during  decomposition  is  also  composition  dependent  and  it decreases with  increasing  Al  content.  Comparing  the  compositional  wavelength evolution extracted from simulations and small angle X-ray scattering experiments show that the decomposition of TiAlN occurs in two stages; first an initial stage of constant  wavelength and  then  a  second  stage  with  an  increasing  wavelength are observed.  This  finding  is  characteristic  for  spinodal  decomposition  and  offers conclusive evidence that an ordering transformation occurs. The Young’s modulus evolution  for  Ti 0.33 Al 0.67 N  shows  an  increase  of  5%  to  ~398  GPa  during  the simulated decomposition.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2012. 72 p.
Series
Linköping Studies in Science and Technology. Thesis, ISSN 0280-7971 ; 1545
National Category
Physical Sciences
Identifiers
urn:nbn:se:liu:diva-79611 (URN)LIU-TEK-LIC-2012:30 (Local ID)978-91-7519-836-1 (ISBN)LIU-TEK-LIC-2012:30 (Archive number)LIU-TEK-LIC-2012:30 (OAI)
Presentation
2012-09-04, Planck, Fysikhuset, Campus Valla, Linköpings universitet, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2012-08-20 Created: 2012-08-10 Last updated: 2016-08-31Bibliographically approved

Open Access in DiVA

No full text

Authority records BETA

Knutsson, AxelUllbrand, JenniferRogström, LinaNorrby, NiklasHultman, LarsJohansson, Mats P.Magnus, Odén

Search in DiVA

By author/editor
Knutsson, AxelUllbrand, JenniferRogström, LinaNorrby, NiklasHultman, LarsJohansson, Mats P.Magnus, Odén
By organisation
Nanostructured MaterialsThe Institute of TechnologyThin Film Physics
Ceramics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 471 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf