liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Microstructure evolution of TiAlN-a phase field study
Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, The Institute of Technology.
Seco Tools AB, Fagersta, Sweden.
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
Abstract [en]

In this work the phase field method has been applied to model the spinodal decomposition of TiAlN. Here we have used thermodynamic data from ab initio calculations that takes into account clustering effects, and experimental diffusivity data of TiAlN as an input to the model. The effect of alloy composition on microstructure and stresses, is studied in time and space. In addition, Young’s modulus evolution of the decomposing microstructure is reported. It was found that the microstructure changes from round AlN rich domains in a TiN matrix, to outstretched TiN rich domains in the {100} crystallographic directions in an AlN matrix, as the composition was changed from x=0.3 to x=0.75 in Ti1-xAlxN. The microstructure evolution was observed to undergo different stages. In short; first elongated structures enriched of the majority element in random directions evolve. Thereafter round AlN rich domains evolve, independent of composition studied, and a completely segregated microstructure forms that finally coarsens. The initiation, decomposition, and coarsening rate was found to increase with Al content due to the increase in driving force with Al content. Al rich domains purify fastest, independent of composition studied. The evolving compositional wavelength decreases with Al content resulting in a finer microstructure for alloys rich in Al. During decomposition high local strains and stresses develop, which reach maximum values of 6·10-3 and 12 GPa respectively.

National Category
URN: urn:nbn:se:liu:diva-79608OAI: diva2:543919
Available from: 2012-08-10 Created: 2012-08-10 Last updated: 2013-10-02Bibliographically approved
In thesis
1. Phase field modeling of Spinodal decomposition in TiAlN
Open this publication in new window or tab >>Phase field modeling of Spinodal decomposition in TiAlN
2012 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

TiAlN  thin  films  are  used  commercially  in  the  cutting  tool  industry  as  wear protection  of  the  inserts.  During  cutting,  the  inserts  are  subjected  to  high temperatures (~ 900  ° C and sometimes higher). The  objective of this work is to simulate the material behavior at such high temperatures. TiAlN has been studied experimentally at least for two decades, but no microstructure simulations have so far been performed. In this thesis two models are presented, one based on regular solution and one that takes into account clustering effects on the thermodynamic data. 

Both  models  include  anisotropic  elasticity  and  lattice  parameters  deviation from  Vegard’s  law.  The  input  parameters  used  in  the  simulations  are ab  initio calculations and experimental data.Methods for extracting diffusivities and activation energies as well as Young’s modulus  from  phase  field  results  are  presented.  Specifically,  strains,  von  Mises stresses,  energies,  and  microstructure  evolution  have  been  studied  during  the spinodal  decomposition of  TiAlN. It  has  been  found  that  strains  and  stresses  are generated during the decomposition i.e. von Mises stresses ranging between 5 and 7.5  GPa  are  typically  seen.  The  stresses  give  rise  to  a  strongly  composition dependent  elastic  energy  that  together  with  the  composition  dependent  gradient energy   determine   the   decomposed   microstructure.   Hence,   the   evolving microstructure depends strongly on the global composition. Morphologies ranging from isotropic, round domains to entangled outstretched domains can be achievedby  changing  the  Al  content.  Moreover,  the  compositional  wavelength  of  the evolved  domains  during  decomposition  is  also  composition  dependent  and  it decreases with  increasing  Al  content.  Comparing  the  compositional  wavelength evolution extracted from simulations and small angle X-ray scattering experiments show that the decomposition of TiAlN occurs in two stages; first an initial stage of constant  wavelength and  then  a  second  stage  with  an  increasing  wavelength are observed.  This  finding  is  characteristic  for  spinodal  decomposition  and  offers conclusive evidence that an ordering transformation occurs. The Young’s modulus evolution  for  Ti 0.33 Al 0.67 N  shows  an  increase  of  5%  to  ~398  GPa  during  the simulated decomposition.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2012. 72 p.
Linköping Studies in Science and Technology. Thesis, ISSN 0280-7971 ; 1545
National Category
Physical Sciences
urn:nbn:se:liu:diva-79611 (URN)LIU-TEK-LIC-2012:30 (Local ID)978-91-7519-836-1 (ISBN)LIU-TEK-LIC-2012:30 (Archive number)LIU-TEK-LIC-2012:30 (OAI)
2012-09-04, Planck, Fysikhuset, Campus Valla, Linköpings universitet, Linköping, 10:15 (English)
Available from: 2012-08-20 Created: 2012-08-10 Last updated: 2016-08-31Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Ullbrand, JenniferGrönhagen, KlaraTasnádi, FerencOdén, Magnus
By organisation
Nanostructured MaterialsThe Institute of TechnologyTheoretical Physics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 93 hits
ReferencesLink to record
Permanent link

Direct link