liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Growth and Characterization of Amorphous TiAlSiN and HfAlSiN Thin Films
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
2012 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

This Thesis explores amorphous transition metal nitrides for cutting tool applications. The aim is to extend the knowledge on amorphous nitride thin lms, to describe the growth process, and to explore ways of characterizing these novel complex materials.

Thin lms of Ti-Al-Si-N and Hf-Al-Si-N were fabricated using industrial cathodic arc evaporation and magnetically-unbalanced reactive magnetron sputtering, respectively. The microstructure of the lms was studied using x-ray diraction (XRD) and transmission electron microscopy (TEM), while compositional analysis of the lms was performed by spectroscopic techniques (EDS, SIMS, and RBS). The mechanical properties were investigated by nanoindentation.

The Ti-Al-Si-N lms were grown on cemented carbide substrates using Ti-Al-Si compound cathodes in an N2 atmosphere. High Al and Si concentrations in the lms (i.e., 12 at% Si and 18 at% Al) promote renucleation and result in x-ray amorphous lms. High resolution TEM (HRTEM) reveals isolated grains, ~2 nm in size, embedded in an amorphous matrix. Annealing experiments show that the lms are thermally stable up to 900 oC. They exhibit age hardening, with an increase in hardness from 21.9 GPa for as-deposited lms to 31.6 GPa at 1000 oC. At 1100 oC severe out-diusion of Co and W from the substrate occurs, and the lms recrystallize into c-TiN and w-AlN.

The single layer Hf-Al-Si-N and multilayer Hf-Al-Si-N/HfN lms were grown on Si(001) substrates from a single Hf0:60Al0:20Si0:20 alloy target in an N2/Ar atmosphere. The composition and nanostructure of the lms was controlled during growth by independently varying the ion energy (Ei) and the ion-to-metal flux ratio (Ji=JMe). With Ji/JMe=8, the nanostructure and composition of the lms changes from x-ray amorphous with a Hf content of 0.6, to an amorphous matrix with encapsulated nanocrystals with 0.66≤Hf≤0.84, to nanocrystalline with 0.96≤Hf≤1.00, when increasing Ei from 15 to 65 eV. Varying Ji=JMe with Ei=13 eV yields electron-diraction amorphous lms at substrate temperatures of 100 oC. Hf-Al-Si-N/HfN multilayers with periods Λ=2-20 nm exhibit enhanced fracture toughness compared to polycrystalline VN, TiN, and Ti0:5Al0:5N reference samples; multilayer hardness values increase from 20 GPa with Λ=20 nm to 27 GPa with Λ=2 nm.

̴

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2012. , p. 44
Series
Linköping Studies in Science and Technology. Thesis, ISSN 0280-7971 ; 1542
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:liu:diva-80211Local ID: LIU-TEK-LIC-2012:27ISBN: 978-91-7519-843-9 (print)OAI: oai:DiVA.org:liu-80211DiVA, id: diva2:546202
Presentation
2012-09-07, Jordan/Fermi, Fysikhuset, Campus Valla, Linköpings universitet, Linköping, 10:15 (Swedish)
Opponent
Supervisors
Available from: 2012-08-22 Created: 2012-08-22 Last updated: 2019-12-19Bibliographically approved
List of papers
1. Growth of Hard Amorphous Ti-Al-Si-N Thin Films by Cathodic Arc Evaporation
Open this publication in new window or tab >>Growth of Hard Amorphous Ti-Al-Si-N Thin Films by Cathodic Arc Evaporation
Show others...
2013 (English)In: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 235, no 25, p. 376-385Article in journal (Refereed) Published
Abstract [en]

Ti(1−x−y)AlxSiyNz (0.02≤x≤0.46, 0.02≤y≤0.28, and 1.08≤z≤1.29) thin films were grown on cemented carbide substrates in an industrial scale cathodic arc evaporation system using Ti-Al-Si compound cathodes in a N2 atmosphere. The microstructure of the as-deposited films changes from nanocrystalline to amorphous by addition of Al and Si to TiN. Upon incorporation of 12 at% Si and 18 at% Al, the films assume an x-ray amorphous state. Post-deposition anneals show that the films are thermally stable up to 900 ◦C. The films exhibit age hardening up to 1000 ◦C with an increase in hardness from 21.9 GPa for as-deposited films to 31.6 GPa at 1000 ◦C. At 1100 ◦C severe out-diffusion of Co and W from the substrate occur, and the films recrystallize into c-TiN and w-AlN.

National Category
Natural Sciences
Identifiers
urn:nbn:se:liu:diva-80199 (URN)10.1016/j.surfcoat.2013.07.014 (DOI)000329596100048 ()
Available from: 2012-08-22 Created: 2012-08-22 Last updated: 2018-01-03Bibliographically approved
2. Growth and Properties of Amorphous Hf1−x−yAlxSiyN (0≤x≤0.2; 0≤y≤0.2) and a-Hf0.6Al0.2Si0.2N/nc-HfN Multilayers by DC Reactive Magnetron Sputtering from a Single Hf0.60Al0.20Si0.20 Target
Open this publication in new window or tab >>Growth and Properties of Amorphous Hf1−x−yAlxSiyN (0≤x≤0.2; 0≤y≤0.2) and a-Hf0.6Al0.2Si0.2N/nc-HfN Multilayers by DC Reactive Magnetron Sputtering from a Single Hf0.60Al0.20Si0.20 Target
Show others...
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Amorphous (a) and nanocrystalline (nc) Hf1−x−yAlxSiyN and multilayer a-Hf0.6Al0.2Si0.2N/nc-HfN films are grown on Si(001) at temperatures Ts = 100-450 ◦C using ultrahigh vacuum magnetically-unbalanced reactive magnetron sputtering from a single Hf0.60Al0.20Si0.20 target in a 5%-N2/Ar atmosphere at a total pressure of 20 mTorr (2.67 Pa). The composition and nanostructure of Hf1−x−yAlxSiyN is controlled during growth by independently varying the ion energy (Ei) and the ion-to-metal flux ratio (Ji/JMe) incident at the film surface. With Ji/JMe = 8, the composition and nanostructure of the films ranges from x-ray amorphous with 1-x-y = 0.60 at Ei = 15 eV, to an amorphous matrix with encapsulated nanocrystals with 1-x-y = 0.66-0.84 at Ei = 25-35 eV, to nanocrystalline with 1-x-y = 0.96-1.00 at Ei = 45-65 eV. Varying Ji/JMe with Ei = 13 eV yields amorphous alloy films at Ts = 100 ◦C. a-Hf0.6Al0.6Si0.6N/nc-HfN multilayers with periods Λ = 2-20 nm exhibit enhanced fracture toughness compared to polycrystalline VN, TiN, and Ti0.5Al0.5N reference samples; multilayer hardness values increase monotonically from 20 GPa with Λ = 20 nm to 27 GPa with Λ = 2 nm.

National Category
Natural Sciences
Identifiers
urn:nbn:se:liu:diva-80207 (URN)
Available from: 2012-08-22 Created: 2012-08-22 Last updated: 2021-12-28Bibliographically approved

Open Access in DiVA

Growth and Characterization of Amorphous TiAlSiN and HfAlSiN Thin Films(779 kB)1903 downloads
File information
File name FULLTEXT01.pdfFile size 779 kBChecksum SHA-512
2988b5b04e0cc8cdf38272e7e4b7c3f1df626fbd792fb2e60a55310ee985d772d1113919a6ddda2229224ef26383e8dd720e6ad6821e2b44d27c1d135ebc6949
Type fulltextMimetype application/pdf
omslag(133 kB)186 downloads
File information
File name COVER01.pdfFile size 133 kBChecksum SHA-512
da589ecece6d9f0f423dc4088355da2ab843f8c7fbeebae7500d6b48221927385e2ce4a278d44dcfdf8316fc3fbb961a8ba7784dfc8e64f3f45d7c58d07e78db
Type coverMimetype application/pdf
Order online >>

Authority records

Fager, Hanna

Search in DiVA

By author/editor
Fager, Hanna
By organisation
Thin Film PhysicsThe Institute of Technology
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 1903 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 636 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf