liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Miniaturization of White Light Emitting Diode on the Borosilicate Glass Pipette
Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.ORCID iD: 0000-0001-6235-7038
(English)Manuscript (preprint) (Other academic)
Abstract [en]

We present the miniaturization of the white light emitting diode on the borosilicate glass pipette’s tip with the diameter of ~700 nm. Zinc oxide nanowires with the average diameter and length of ~80 nm and ~1.5 μm, respectively, have been chemically synthesized and characterized to investigate the surface morphology, chemical composition and the crystalline nature of the nanoscale structure. The emission capabilities and the color qualities of the broad band emission spectrum from the heterostructure nanodevice have been investigated from electroluminescence measurements and color rendering index calculations.

Keyword [en]
Zinc Oxide, White light emitting diodes, Schottky diode, Transmission Electron Microscopy, Color Rendering Index
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:liu:diva-80631OAI: oai:DiVA.org:liu-80631DiVA: diva2:547473
Available from: 2012-08-28 Created: 2012-08-28 Last updated: 2014-01-15Bibliographically approved
In thesis
1. Chemically Synthesized ZnO Nanostructures: Realization of White Optoelectronic Devices with High CRI Values
Open this publication in new window or tab >>Chemically Synthesized ZnO Nanostructures: Realization of White Optoelectronic Devices with High CRI Values
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Recently in a couple of decades, nanotechnology and nanoscience are becoming wide spread fields of research due to the revolutionary advances in the manufacturing processes which enable the realization of infinitesimally modest nanodevices holding a huge variety of fascinating properties and applications. Besides various functional materials, ZnO has captivated interests for a variety of applications in electronics and optoelectronics owing to its unique characteristics; such as, direct wide band gap, large exciton binding energy, semiconducting, photonic, and piezoelectric properties. A distinguished capability of the ZnO material is the effortless synthesis of nanoscale structures with enormous assortments in their morphological and dimensional aspects. Regardless the significant developments in the fabrication of ZnO based homojunction optoelectronic nanodevices, the stable and reproducible p-type conductivity of ZnO material is still a challenge which is one of the paramount factors of the increasing interest for fabrication of heterojunction of ZnO nanostructures with other mainstream ptype semiconductors, such as Si, GaN, and organic materials.

Herein, ZnO nanorods, nanotubes and nanoflowers have been synthesized by solution-based methodology at low temperature (<100 ˚C) and a thorough study on the applications of ZnO nanostructures as white light emitting diodes (LEDs) has been perceived. At the outset, ZnO nanotubes have been synthesized by the trimming of aqueous chemically grown ZnO nanorods with 100% yield and their comparative optical properties have been explored through photoluminescence study, and a profound enhancement in ultraviolet and visible emission is observed (paper I). ZnO nanotubes are further exploited for its promising application as an optoelectronic device. Pure white light emission is observed from the ZnO nanotubes/p-GaN based LED. To analyze the location of the recombination of electron–hole and current transport mechanisms, the EL characteristics of n-ZnO nanotubes/p-GaN heterostructure LED have been investigated under forward and reverse bias. The origin of distinctly different EL peaks under both configurations has been suggested and the influence of increasing values of temperature on the device characteristics is also studied under fixed applied current, in order to check its performance under harsh conditions and for practical  applications (paper II-III). Moreover, it is observed that ZnO-nanotubes/GaN heterostructure LED has an ability to produce an environmentally benign alternative of traditional lighting sources with high color rendering index (CRI) of 96 (paper IV). On the basis of EL, cathodoluminescence and transmission electron microscopy investigations; a robust correspondence has been established between the formation of radiative surface defect states in the nanotubes and the pure cool white light with appropriate color temperature. In paper V, a miniaturized white LED has been developed using Au/n-ZnO nanorods integrated on a glass pipette (having a sharp cylindrical tip with the diameter of 700 nm) which exhibits a broad EL band emission covering the whole visible spectrum range and a CRI value of 73. Besides one-dimensional ZnO nanostructures (nanorods and nanotubes), three-dimensional ZnO dahlia-flower nanoarchitectures have also been fabricated at room temperature relying on natural oxidation based aqueous chemically synthetic approach (paper VI).  Glycineassisted multi-oriented ZnO nanoflowers with highly large surface area to volume ratio have been synthesized on Zn foil substrate through the self-assembly of thin nano-petals as building blocks and polar surfaces of ZnO have been anticipated to be  stabilized through the adsorption of reactive hydroxyl and amide functions of glycine.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2012. 62 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1466
National Category
Natural Sciences
Identifiers
urn:nbn:se:liu:diva-80634 (URN)978-91-7519-833-0 (ISBN)
Public defence
2012-09-14, K3, Kåkenhus, Campus Norrköping, Linköpings universitet, Norrköping, 10:15 (English)
Opponent
Supervisors
Available from: 2012-08-28 Created: 2012-08-28 Last updated: 2014-01-15Bibliographically approved

Open Access in DiVA

No full text

Authority records BETA

Jamil Rana, SadafNur, OmerWillander, Magnus

Search in DiVA

By author/editor
Jamil Rana, SadafNur, OmerWillander, Magnus
By organisation
Department of Science and TechnologyThe Institute of TechnologyPhysics and Electronics
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 118 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf