liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Optimal Engine Operation in a Multi-Mode CVT Wheel Loader
Linköping University, Department of Electrical Engineering, Vehicular Systems. Linköping University, The Institute of Technology.
2012 (English)Licentiate thesis, monograph (Other academic)
Abstract [en]

Throughout the vehicular industry there is a drive for increased fuel efficiency. This is the case also for heavy equipment like wheel loaders. The operation of such machines is characterized by its highly transient nature, the episodes of high tractive effort at low speed and that power is used by both the transmission and the working hydraulics. The present transmission is well suited for this operation, though the efficiency is low in some modes of operation. Both operational advantages and efficiency drawbacks are highly related to the use of a torque converter. Continuously variable transmissions (CVTs) may hold a potential for achieving similar operability with reduced fuel consumption, though such devices increase the demand for, and importance of, active control.

Common wheel loader operation is readily described in a framework of loading cycles. The general loading cycle is described, and a transmission oriented cycle description is introduced, in deterministic and stochastic forms, and a description is made on how such cycles are created from measurements. A loading cycle identifier is used for detecting cycles in a set of measured data, and a stochastic cycle is formed from statistics on the detected cycles.

CVTs increase the possibility for active control, since a degree of freedom is introduced in the engine operating point. Optimal operating point trajectories are derived, using dynamic programming (DP), for naturally aspirated (NA) and turbocharged (TC) engines. The NA-engine solution is analyzed with Pontryagin’s maximum principle (PMP). This analysis is used for deriving PMP based methods for finding the optimal solutions for both engines. Experience show that these methods are 100 times faster than DP, but since the restrictions on the applicable load cases are severe, the main contribution from these is in the pedagogic visualization of optimization. Methods for deriving suboptimal operating point trajectories for both the NA and the TC engines are also developed, based on the optimization results. The methods are a factor >1000 faster than DP while producing feasible trajectories with less than 5% increase in fuel consumption compared to the optimal.

Multi-mode CVTs provide the possibility of even higher efficiency than single mode devices. At the same time, the added complexity makes control development increasingly time consuming and costly, while the quality of the control is decisive for the success of the system. It is therefore important to be able to evaluate the potential of transmission concepts before control development commence. Stochastic dynamic programming is used and evaluated as a tool for control independent comparing of the present transmission and a hydrostatic multi-mode CVT concept. The introduction of a stochastic load complicates the optimization, especially in the feasible choice of states for the optimization. The results show that the multi-mode CVT has at least 15% lower minimum fuel consumption than the present transmission, and that this difference is not sensitive to prediction uncertainties.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2012. , 66 p.
Linköping Studies in Science and Technology. Thesis, ISSN 0280-7971 ; 1547
National Category
Engineering and Technology
URN: urn:nbn:se:liu:diva-80838Local ID: LIU-TEK-LIC-2012:32ISBN: 978-91-7519-829-3OAI: diva2:548532
2012-11-23, Visionen, entrance 27-29, B-building, Campus Valla, Linköping University, Linköping, 10:15 (English)
Available from: 2012-08-31 Created: 2012-08-31 Last updated: 2012-12-10Bibliographically approved

Open Access in DiVA

Optimal Engine Operation in a Multi-Mode CVT Wheel Loader(1344 kB)1028 downloads
File information
File name FULLTEXT01.pdfFile size 1344 kBChecksum SHA-512
Type fulltextMimetype application/pdf
omslag(31 kB)26 downloads
File information
File name COVER01.pdfFile size 31 kBChecksum SHA-512
Type coverMimetype application/pdf

Search in DiVA

By author/editor
Nilsson, Tomas
By organisation
Vehicular SystemsThe Institute of Technology
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 1028 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 263 hits
ReferencesLink to record
Permanent link

Direct link