liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Self-organized Nanostructuring in Zr0.64Al0.36N Thin Films Studied by Atom Probe Tomography
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
Dept. of Applied Physics, Chalmers University of Technology, Göteborg, Sweden.
Chalmers University of Technology, Microscopy and Microanalysis, Department of Applied Physics, Göteborg, Sweden.
Show others and affiliations
2016 (English)In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, 233-238 p.Article in journal (Refereed) Published
Abstract [en]

We have applied atom probe tomography (apt) to analyze the selforganized structure of wear-resistant Zr0.64Al0.36N thin films grown by magnetron sputtering. Transmission electron microscopy shows that these films grow as a two-dimensional nanocomposite, consisting of interleaved lamellae in a labyrinthine structure, with a size scale of ∼ 5 nm. The structure was recovered in the Al apt signal, while the Zr and N data lacked structural information due to severe local magnification effects. The onset of the self-organized growth was observed to occur locally by nucleation, at 5-8 nm from the MgO substrate, after increasing Zr-Al compositional fluctuations. Finally, it was observed that the self-organized growth mode could be perturbed by renucleation of ZrN.

Place, publisher, year, edition, pages
Elsevier, 2016. 233-238 p.
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:liu:diva-84258DOI: 10.1016/j.tsf.2016.07.034ISI: 000381939700037OAI: oai:DiVA.org:liu-84258DiVA: diva2:558393
Note

Funding agencies: VINN Excellence Center on Functional Nanoscale Materials; Swedish Research Council; Swedish Government Strategic Faculty Grant in Materials Science (SFO Mat-LiU) at Linkoping University; Swedish Governmental Agency for Innovation Systems (Vinnova) [2011-0

Vid tiden för disputationen förelåg publikationen som manuskript

Available from: 2012-10-03 Created: 2012-10-03 Last updated: 2017-12-07Bibliographically approved
In thesis
1. Inside The Miscibility Gap: Nanostructuring and Phase Transformations in Hard Nitride Coatings
Open this publication in new window or tab >>Inside The Miscibility Gap: Nanostructuring and Phase Transformations in Hard Nitride Coatings
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis is concerned with self-organization phenomena in hard and wear resistant transition-metal nitride coatings, both during growth and during post deposition thermal annealing. The uniting physical principle in the studied systems is the immiscibility of their constituent parts, which leads, under certain conditions, to structural variations on the nanoscale. The study of such structures is challenging, and during this work atom probe tomography (apt) was developed as a viable tool for their study. Ti0.33Al0.67N was observed to undergo spinodal decomposition upon annealing to 900 °C, by the use of apt in combination with electron microscopy. The addition of C to TiSiN was found to promote and refine the feather-like microstructure common in the system, with an ensuing decrease in thermal stability. An age-hardening of 36 % was measured in arc evaporated Zr0.44Al0.56N1.20, which was a nanocomposite of cubic, hexagonal, and amorphous phases. Magnetron sputtering of Zr0.64Al0.36N at 900 °C resulted in a self-organized and highly ordered growth of a two-dimensional two-phase labyrinthine structure of cubic ZrN and wurtzite AlN.The structure was analyzed and recovered by apt, although the ZrN phase suffered from severe trajectory aberrations, rendering only the Al signal useable.The initiation of the organized growth was found to occur by local nucleation at 5-8 nm from the substrate, before which random fluctuations in Al/Zr content increased steadily from the substrate. Finally, the decomposition of solid-solution TiB0.33N0.67 was found, by apt, to progress through the nucleation of TiB0.5N0.5 and TiN, followed by the transformation of the former into hexagonal TiB2.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2012. 69 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1472
National Category
Natural Sciences
Identifiers
urn:nbn:se:liu:diva-84263 (URN)978-91-7519-809-5 (ISBN)
Public defence
2012-10-19, Planck, Fysikhuset, Campus Valla, Linköpings universitet, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2012-10-03 Created: 2012-10-03 Last updated: 2016-08-31Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Johnson, LarsGhafoor, NaureenOdén, MagnusHultman, Lars

Search in DiVA

By author/editor
Johnson, LarsGhafoor, NaureenOdén, MagnusHultman, Lars
By organisation
Thin Film PhysicsThe Institute of TechnologyNanostructured Materials
In the same journal
Thin Solid Films
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 211 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf