Aircraft Design Automation and Subscale Testing: With Special Reference to Micro Air Vehicles
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
This dissertation concerns how design automation as well as rapid prototyping and testing of subscale prototypes can support aircraft design. A framework for design automation has been developed and is applied specifically to Micro Air Vehicles (MAV). MAVs are an interesting area for design automation as they are an application where the entire design, from requirements to manufacturing, can indeed be automated. From a complexity point of view it can be considered to be similar to conceptual design of manned aircraft.
The created design optimization framework interfaces several software systems to generate MAVs to optimally fulfil specific mission requirements. The goal has been to find a method for MAV design and optimization from a holistic viewpoint, i.e. not a method for optimizing single subsystems, such as motor or propeller, but a method that embraces all disciplines of MAV design. Key drivers have been the use of off-the-shelf components wherever possible and to optimize the geometric shape not just from an aerodynamic perspective, but also to consider internal component placement and stability criteria. The optimization technique chosen is a multi-objective genetic algorithm. Finally, a novel method for direct digital manufacturing of MAVs is proposed.
The utility of the framework has been demonstrated with several case studies on MAV design. The propulsion system is identified as most influential on MAV performance and thus is where it is most important to have accurate models. For this reason the models used in the framework are experimentally validated. The influence of atmospheric winds and turbulence on MAV performance is also experimentally investigated
The subscale testing efforts are aimed at reducing cost and increasing the usability of flight testing with subscale vehicles. Data acquisition system design is described and low-cost testing methods are presented, such as car top testing or in-flight flow visualization. Two subscale flight projects are also presented.
Abstract [sv]
Den här avhandlingen handlar om hur konstruktionsprocessen av flygplan kan stödjas dels genom förbättrade analysverktyg, s.k. konstruktionsautomation, och dels genom metoder för att snabbt och billigt kunna tillverka och testa nedskalade prototyper.
Konstruktion av flygplan är ett komplext område som innefattar många tätt sammanlänkade underdiscipliner. Ett lyckat flygplan är således en väl avvägd kompromiss mellan alla dessa discipliner. Dagens hårda konkurrens, krav på miljö, samt tekniska komplexitet ökar kraven på att framtidens flygplan måste vara bättre optimerade än idag. Traditionell flygplanskonstruktion kan ses som en sekventiell process där man stegvis förfinar konstruktionen en disciplin i taget. Med modern datorkraft och beräkningsprogram kan denna process delvis automatiseras varpå man på ett tidigare stadium kan ta hänsyn till fler discipliner. Många av de steg som tidigare genomförts sekventiellt kan nu göras parallellt. Det ökar möjligheten att nå en optimal konstruktion, samt minskar riskerna för att man tidigt bygger in fel i konstruktionen som är kostsamma att rätta till i ett senare skede. I den här avhandlingen beskrivs hur sådan konstruktionsautomation kan genomföras med hjälp av multidisciplinär optimering och en sammankoppling av ett flertal programvaror. Detta har speciellt applicerats på så kallade ”micro air vehicles” (MAV).
En MAV kan beskrivas som en luftfarkost av en sådan storlek att den enkelt kan bäras och skötas av en person. I princip ett flygplan i samma storleksklass som fåglar. I Sverige benämns dessa ofta som ”micro UAV”. Nyttan med MAVs är många sett både från ett militärt och civilt perspektiv. Typiska användningsområden är spaning/övervakning inom polis, militär och räddningsverksamhet, samt kartering, meterologi, gränsbevakning, jordbruksinventering etc. Den konstruktionsautomation som har utvecklats möjliggör att generera MAVs optimerade för givna prestandakrav och önskad nyttolast. I optimeringen så genereras den optimala skrovformen, val av framdrivningssystem, samt placering av interna komponenter. Slutligen så tillverkas den genererade farkosten genom en 3D skrivare. Avhandlingen lägger även vikt vid att experimentellt validera de beräkningar som ligger till grund för optimeringen.
Det andra spåret i avhandlingen behandlar ämnet konceptutvärdering genom nedskalade modeller. Att bygga och testa fysiska modeller är egentligen inget nytt inom flygkonstruktion. Avhandlingen visar dock hur man med modern teknik kan göra detta billigare än tidigare och samtidigt öka nyttan. Miniatyriseringen av elektronik gör att det idag går att utrusta radiostyrda demonstratorer med avancerade mätsystem varpå värdefull data kan insamlas. Vikten av att kunna testa fysiska prototyper ökar alltjämt som flygindustrin blir allt mer teoretisk. Tiden mellan olika flygplanskonstruktioner blir också längre, samt att behovet för nya radikala konstruktioner ökar för att möta de strama miljökraven. Att snabbt och billigt kunna utvärdera prototyper blir därför en allt viktigare del för att hålla kompetensen på en hög nivå. Avhandlingen behandlar skalning, konstruktionsmetoder, instrumentering och testning.
Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2012. , p. 100
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1480
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-84673ISBN: 978-91-7519-788-3 (print)OAI: oai:DiVA.org:liu-84673DiVA, id: diva2:561097
Public defence
2012-11-23, ACAS, A huset, Campus Valla, Linköpings universitet, Linköping, 10:15 (English)
Opponent
Supervisors
2012-10-172012-10-172019-12-10Bibliographically approved
List of papers