liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Probing chemical shifts of invisible states of proteins with relaxation dispersion NMR spectroscopy: How well can we do?
University of Toronto, Canada.
University of Toronto, Canada.
University of Toronto, Canada.
University of Toronto, Canada.
Show others and affiliations
2008 (English)In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 130, no 8, 2667-2675 p.Article in journal (Refereed) Published
Abstract [en]

Carr−Purcell−Meiboom−Gill relaxation dispersion NMR spectroscopy has evolved into a powerful approach for the study of low populated, invisible conformations of biological molecules. One of the powerful features of the experiment is that chemical shift differences between the exchanging conformers can be obtained, providing structural information about invisible excited states. Through the development of new labeling approaches and NMR experiments it is now possible to measure backbone 13Cα and 13CO relaxation dispersion profiles in proteins without complications from 13C−13C couplings. Such measurements are presented here, along with those that probe exchange using 15N and 1HN nuclei. A key experimental design has been the choice of an exchanging system where excited-state chemical shifts were known from independent measurement. Thus it is possible to evaluate quantitatively the accuracy of chemical shift differences obtained in dispersion experiments and to establish that in general very accurate values can be obtained. The experimental work is supplemented by computations that suggest that similarly accurate shifts can be measured in many cases for systems with exchange rates and populations that fall within the range of those that can be quantified by relaxation dispersion. The accuracy of the extracted chemical shifts opens up the possibility of obtaining quantitative structural information of invisible states of the sort that is now available from chemical shifts recorded on ground states of proteins.

Place, publisher, year, edition, pages
American Chemical Society , 2008. Vol. 130, no 8, 2667-2675 p.
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:liu:diva-85029DOI: 10.1021/ja078337pOAI: oai:DiVA.org:liu-85029DiVA: diva2:563711
Available from: 2012-10-31 Created: 2012-10-31 Last updated: 2017-12-07

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Lundström, Patrik

Search in DiVA

By author/editor
Lundström, Patrik
In the same journal
Journal of the American Chemical Society
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 56 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf