liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The folding pathway of an FF domain: Characterization of an on-pathway intermediate state under folding conditions by N-15, C-13(alpha) and C-13-methyl relaxation dispersion and H-1/(2) H-exchange NMR Spectroscopy
University of Toronto, Ontario, Canada.
MRC, University of Cambridge, UK.
University of Toronto, ON, Canada.
MRC, University of Cambridge, UK.
Show others and affiliations
2007 (English)In: Journal of Molecular Biology, ISSN 0022-2836, E-ISSN 1089-8638, Vol. 372, no 2, 497-512 p.Article in journal (Refereed) Published
Abstract [en]

The FF domain from the human protein HYPA/FBP11 folds via a lowenergy on-pathway intermediate (. Elucidation of the structure of such folding intermediates and denatured states under conditions that favour folding are difficult tasks. Here, we investigated the millisecond time-scale equilibrium folding transition of the 71-residue four-helix bundle wild-type protein by N-15, C-13(alpha) and methyl C-13 Carr-Purcell-Meiboom-Gill (CPMG) NMR relaxation dispersion experiments and by H-exchange measurements. The relaxation data for the wild-type protein fitted a simple two-site exchange process between the folded state (F) and I. Destabilization of F in mutants A17G and Q19G allowed the detection of the unfolded state U by 15N CPMG relaxation dispersion. The dispersion data for these mutants fitted a three-site exchange scheme, U-I-F, with I populated higher than U. The kinetics and thermodynamics of the folding reaction were obtained via temperature and urea-dependent relaxation dispersion experiments, along with structural information on I from backbone N-15, C-13(alpha) and side-chain methyl 13C chemical shifts, with further information from protection factors for the backbone amide groups from H-1/(2) H-exchange. Notably, helices H1-H3 are at least partially formed in 1, while helix H4 is largely disordered. Chemical shift differences for the methyl 13 C nuclei suggest a paucity of stable, native-like hydrophobic interactions in 1. These data are consistent with (D-analysis of the rate-limiting transition state between I and F. The combination of relaxation dispersion and (1) data can elucidate whole experimental folding pathways.

Place, publisher, year, edition, pages
Elsevier, 2007. Vol. 372, no 2, 497-512 p.
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:liu:diva-85035DOI: 10.1016/j.jmb.2007.06.012PubMedID: 17689561OAI: oai:DiVA.org:liu-85035DiVA: diva2:563727
Available from: 2012-10-31 Created: 2012-10-31 Last updated: 2017-12-07

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Authority records BETA

Lundström, Patrik

Search in DiVA

By author/editor
Lundström, Patrik
In the same journal
Journal of Molecular Biology
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 52 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf