liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Evaluating Model Uncertainty Based on Probabilistic Analysis and Component Output Uncertainty Descriptions
Saab Aeronautics, Linköping, Sweden.ORCID iD: 0000-0002-3120-1361
Saab Aeronautics, Linköping, Sweden.
Linköping University, Department of Management and Engineering, Machine Design. Linköping University, The Institute of Technology.
2012 (English)In: Proceedings of the ASME 2012 International Mechanical Engineering Congress & Exposition: IMECE2012-85236 / [ed] ASME, 2012Conference paper, Published paper (Other academic)
Abstract [en]

To support early model validation, this paper describes a method utilizing information obtained from the common practice component level validation to assess uncertainties on model top level. Initiated in previous research, a generic output uncertainty description component, intended for power-port based simulation models of physical systems, has been implemented in Modelica. A set of model components has been extended with the generic output uncertainty description, and the concept of using component level output uncertainty to assess model top level uncertainty has been applied on a simulation model of a radar liquid cooling system. The focus of this paper is on investigating the applicability of combining the output uncertainty method with probabilistic techniques, not only to provide upper and lower bounds on model uncertaintiesbut also to accompany the uncertainties with estimated probabilities.It is shown that the method may result in a significant improvement in the conditions for conducting an assessment of model uncertainties. The primary use of the method, in combination with either deterministic or probabilistic techniques, is in the early development phases when system level measurement data are scarce. The method may also be used to point out which model components contribute most to the uncertainty on model top level. Such information can be used to concentrate physical testing activities to areas where it is needed most. In this context, the method supports the concept of Virtual Testing.

Place, publisher, year, edition, pages
2012.
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-85455OAI: oai:DiVA.org:liu-85455DiVA: diva2:570488
Conference
ASME 2012 International Mechanical Engineering Congress & Exposition, IMECE2012, 9-15 November, Houston, Texas, USA
Available from: 2012-11-19 Created: 2012-11-19 Last updated: 2015-01-15Bibliographically approved
In thesis
1. Methods for Early Model Validation: Applied on Simulation Models of Aircraft Vehicle Systems
Open this publication in new window or tab >>Methods for Early Model Validation: Applied on Simulation Models of Aircraft Vehicle Systems
2013 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Simulation  models of physical systems, with or without control software, are widely used in the aeronautic industry in applications ranging from system development to verification and end-user training. With the main drivers of reducing the cost of physical testing and in general enhancing the ability to take early model-based design decisions, there is an ongoing trend of further increasing the portion of modeling and simulation.

The work presented in this thesis is focused on development of methodology for model validation, which is a key enabler for successfully reducing the amount of physical testing without compromising safety. Reducing the amount of physical testing is especially interesting in the aeronautic industry, where each physical test commonly represents a significant cost. Besides the cost aspect, it may also be difficult or hazardous to carry out physical testing. Specific to the aeronautic industry are also the relatively long development cycles, implying long periods of uncertainty during product development. In both industry and academia a common viewpoint is that verification, validation, and uncertainty quantification of simulation models are critical activities for a successful deployment of model-based systems engineering. However, quantification of simulation results uncertainty commonly requires a large amount of certain information, and for industrial applications available methods often seem too detailed or tedious to even try. This in total constitutes more than sufficient reason to invest in research on methodology for model validation, with special focus on simplified methods for use in early development phases when system measurement data are scarce.

Results from the work include a method supporting early model validation. When sufficient system level measurement data for validation purposes is unavailable, this method provides a means to use knowledge of component level uncertainty for assessment of model top level uncertainty. Also, the common situation of lacking data for characterization of parameter uncertainties is to some degree mitigated. A novel concept has been developed for integrating uncertainty information obtained from component level validation directly into components, enabling assessment of model level uncertainty. In this way, the level of abstraction is raised from uncertainty of component input parameters to uncertainty of component output  characteristics. The method is integrated in a Modelica component library for modeling and simulation of aircraft vehicle systems, and is evaluated in both deterministic and probabilistic frameworks using an industrial application example. Results also include an industrial applicable process for model development, validation, and export, and the concept of virtual testing and virtual certification is discussed.

Abstract [sv]

Simmuleringsmodeller av fysikaliska system, med eller utan reglerande mjukvara, har sedan lång tid tillbaka ett brett användningsområde inom flygindustrin. Tillämpningar finns inom allt från systemutveckling till produktverifiering och träning. Med de huvudsakliga drivkrafterna att reducera mängden fysisk provning samt att öka förutsättningarna till att fatta välgrundade modellbaserade designbeslut pågår en trend att ytterligare öka andelen modellering och simulering.

Arbetet som presenteras i denna avhandling är fokuserat på utveckling av metodik för validering av simuleringsmodeller, vilket anses vara ett kritiskt område för att framgångsrikt minska mängden fysisk provning utan att äventyra säkerheten. Utveckling av metoder för att på ett säkert sätt minska mängden fysisk provning är speciellt intressant inom flygindustrin där varje fysiskt prov vanligen utgör en betydande kostnad. Utöver de stora kostnaderna kan det även vara svårt eller riskfyllt att genomföra fysisk provning. Specifikt är även de långa utvecklingscyklerna som innebär att man har långa perioder av osäkerhet under produktutvecklingen. Inom såväl industri som akademi ses verifiering, validering och osäkerhetsanalys av simuleringsmodeller som kritiska aktiviteter för en framgångsrik tillämpning av modellbaserad systemutveckling. Kvantifiering av osäkerheterna i ett simuleringsresultat kräver dock vanligen en betydande mängd säker information, och för industriella tillämpningar framstår tillgängliga metoder ofta som alltför detaljerade eller arbetskrävande. Totalt sett ger detta särskild anledning till forskning inom metodik för modellvalidering, med speciellt fokus på förenklade metoder för användning i tidiga utvecklingsfaser då tillgången på mätdata är knapp.

Resultatet från arbetet inkluderar en metod som stöttar tidig modellvalidering. Metoden är avsedd att tillämpas vid brist på mätdata från aktuellt system, och möjliggör utnyttjande av osäkerhetsinformation från komponentnivå för bedömning av osäkerhet på modellnivå. Avsaknad av data för karaktärisering av parameterosäkerheter är även ett vanligt förekommande problem som till viss mån mildras genom användning av metoden. Ett koncept har utvecklats för att integrera osäkerhetsinformation hämtad från komponentvalidering direkt i en modells komponenter, vilket möjliggör en förenklad osäkerhetsanalys på modellnivå. Abstraktionsnivån vid osäkerhetsanalysen höjs på så sätt från parameternivå till komponentnivå. Metoden är implementerad i ett Modelica-baserat komponentbibliotek för modellering och simulering av grundflygplansystem, och har utvärderats i en industriell tillämpning i kombination med både deterministiska och probabilistiska tekniker. Resultatet från arbetet inkluderar även en industriellt tillämplig process för utveckling, validering och export av simuleringsmodeller, och begreppen virtuell provning och virtuell certifiering diskuteras.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2013. 61 p.
Series
Linköping Studies in Science and Technology. Thesis, ISSN 0280-7971 ; 1591
National Category
Engineering and Technology
Identifiers
urn:nbn:se:liu:diva-91277 (URN)978-91-7519-627-5 (ISBN)
Presentation
2013-05-03, Sal A35, A-huset, Campus Valla, Linköpings universitet, Linköping, 11:00 (Swedish)
Opponent
Supervisors
Available from: 2013-04-18 Created: 2013-04-18 Last updated: 2015-01-15Bibliographically approved

Open Access in DiVA

Evaluating Model Uncertainty Based on Probabilistic Analysis and Component Output Uncertainty Descriptions(742 kB)173 downloads
File information
File name FULLTEXT01.pdfFile size 742 kBChecksum SHA-512
5dc94d29cab9adba23af835b056f83295fbda923bd9a82dfaea4d1f21ccb0970dfb026d6f215d565b396707e19a3244d271ff3e13731922a14b1ad0aac7dff21
Type fulltextMimetype application/pdf

Other links

IMECE2012-85236Author homepage

Authority records BETA

Carlsson, MagnusGavel, HampusÖlvander, Johan

Search in DiVA

By author/editor
Carlsson, MagnusGavel, HampusÖlvander, Johan
By organisation
Machine DesignThe Institute of Technology
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 173 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 193 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf