liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Characterization of InGaN/GaN quantum well growth using monochromated valence electron energy loss spectroscopy
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.ORCID iD: 0000-0003-3203-7935
Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
Show others and affiliations
2014 (English)In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 115, no 3, 034302- p.Article in journal (Refereed) Published
Abstract [en]

The early stages of InGaN/GaN quantum wells growth for In reduced conditions have been investigated for varying thickness and composition of the wells. The structures were studied by monochromated STEM–VEELS spectrum imaging at high spatial resolution. It is found that beyond a critical well thickness and composition, quantum dots (>20 nm) are formed inside the well. These are buried by compositionally graded InGaN, which is formed as GaN is grown while residual In is incorporated into the growing structure. It is proposed that these dots may act as carrier localization centers inside the quantum wells.

Place, publisher, year, edition, pages
2014. Vol. 115, no 3, 034302- p.
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-85903DOI: 10.1063/1.4861179ISI: 000330615500062OAI: oai:DiVA.org:liu-85903DiVA: diva2:573684
Note

On the day of the defence date the status of this article was Manuscript.

Available from: 2012-12-03 Created: 2012-12-03 Last updated: 2017-12-07Bibliographically approved
In thesis
1. Valence Electron Energy Loss Spectroscopy of III-Nitride Semiconductors
Open this publication in new window or tab >>Valence Electron Energy Loss Spectroscopy of III-Nitride Semiconductors
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This doctorate thesis covers both experimental and theoretical investigations of the optical responses of the group III-nitrides (AlN, GaN, InN) and their ternary alloys. The goal of this research has been to explore the usefulness of valence electron energy loss spectroscopy (VEELS) for materials characterization of group III-nitride semiconductors at the nanoscale. The experiments are based on the evaluation of the bulk plasmon characteristics in the low energy loss part of the EEL spectrum since it is highly dependent on the material’s composition and strain. This method offers advantages as being fast, reliable, and sensitive. VEELS characterization results were corroborated with other experimental methods like X-ray diffraction and Rutherford backscattering spectrometry as well as full-potential calculations (Wien2k). Investigated III-nitride structures were grown using magnetron sputtering epitaxy and metal organic chemical vapor deposition techniques.

Initially, it was demonstrated that EELS in the valence region is a powerful method for a fast compositional analysis of the Al1-xInxN (0≤x≤1) system. The bulk plasmon energy follows a linear relation with respect to the lattice parameter and composition in Al1-xInxN layers. Furthermore, the effect of strain on valence EELS was investigated. It was experimentally determined that the AlN bulk plasmon peak experiences a shift of 0.156 eV per 1% volume change at constant composition. The experimental results were corroborated by full-potential calculations, which showed that the bulk plasmon peak position varies nearly linearly with the unit-cell volume, at least up to 3% volume change.

Employing the bulk plasmon energy loss, compositional characterization was also applied to confined structures, such as nanorods and quantum wells (QWs). Compositional profiling of spontaneously formed AlInN nanorods with varying In concentration was realized in cross-sectional and plan-view geometries. It was established that the structures exhibit a core-shell structure, where the In concentration in the core is higher than in the shell. The growth of InGaN/GaN multiple QWs with respect to composition and interface homogeneities was investigated. It was found that at certain compositions and thicknesses of QWs, where phase separation does not occur due to spinodal decomposition. Instead, QWs develop quantum dot like features inside the well as a consequence of Stranski-Krastanov-type growth mode, and delayed In incorporation into the structure.

The thermal stability and degradation mechanisms of Al1-xInxN (0≤x≤1) films with different In contents, stacked in a multilayer sample, and different periodicity Al1-xInxN/AlN multilayer films, was investigated by performing a thermal annealing in combination with VEELS mapping in-situ. It was concluded that the In content in the Al1-xInxN layer determines the thermal stability and decomposition path. Finally, the phase separation by spinodal decomposition of different periodicity AlInN/AlN layers, with a starting composition inside the miscibility gap, was explored.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2012. 74 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1488
National Category
Natural Sciences
Identifiers
urn:nbn:se:liu:diva-85907 (URN)978-91-7519-746-3 (ISBN)
Public defence
2012-12-14, Planck, Fysikhuset, Campus Valla, Linköpings universitet, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2012-12-03 Created: 2012-12-03 Last updated: 2016-08-31Bibliographically approved

Open Access in DiVA

fulltext(3908 kB)278 downloads
File information
File name FULLTEXT01.pdfFile size 3908 kBChecksum SHA-512
2e8bce4f5ecf7e73d24005bfafe1de6c861d59cbf2f33d8c62f377d19568a1be610f4919779b22b6c8ac1337b0e1697dd8c12abdb3f90277c439faab21a4434c
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records BETA

Palisaitis, JustinasLundskog, AndersForsberg, UrbanJanzén, ErikBirch, JensHultman, LarsPersson, Per

Search in DiVA

By author/editor
Palisaitis, JustinasLundskog, AndersForsberg, UrbanJanzén, ErikBirch, JensHultman, LarsPersson, Per
By organisation
Thin Film PhysicsThe Institute of TechnologySemiconductor Materials
In the same journal
Journal of Applied Physics
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 278 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 418 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf