liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Polarization effects in reflection from the cuticle of scarab beetles studied by spectroscopic Mueller-matrix ellipsometry
Linköping University, Department of Physics, Chemistry and Biology, Applied Optics . Linköping University, The Institute of Technology.ORCID iD: 0000-0001-9229-2028
Linköping University, Department of Physics, Chemistry and Biology, Applied Optics . Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Applied Optics . Linköping University, The Institute of Technology.
Show others and affiliations
2012 (English)In: AES 2012, Advanced Electromagnetics Symposium, 2012Conference paper, Abstract (Other academic)
Abstract [en]

Polarization effects in reflection from the cuticle of scarab beetles studied by spectroscopic Mueller-matrix ellipsometry


H. Arwin*, T. Berlind, J. Birch, L. Fernandez Del Rio, J. Gustafson, J. Landin,

R. Magnusson, C. Åkerlind, and K. Järrendahl

Department of Physics, Chemistry and Biology, Linköping University, Sweden

*corresponding author:


Abstract- Many scarab beetles exhibit structural colors and complex polarization phenomena in reflection. These effects are characterized with spectroscopic Mueller-matrix ellipsometry in our work. The polarization ellipse of reflected light as well as the degree of polarization is presented including variations with angle of incidence and wavelength. Emphasis is on beetles showing chiral effects and structural modeling of cuticle nanostructure is discussed.


Background Since one hundred years it is known that some scarab beetles reflect elliptically polarized light as demonstrated by Michelson for the beetle Chrysina resplendens [1]. The handedness of the polarization is in a majority of the cases left-handed but also right-handed polarization has been found [2,3]. The ellipticity varies with wavelength and viewing angle but can be close to +1 or -1 (right or left circular polarization, respectively) and in addition these beetles may exhibit beautiful structural colors. The polarization and color effects are generated in the outer part of the exoskeleton, the cuticle. These natural photonic structures are often multifunctional and play important roles for survival of beetles, e.g. for hiding from or scaring predators, for intraspecies communication, etc. [4]. However, such structures may find use in many commercial applications and a major motivation for detailed studies of natural photonic structures is that they inspire to biomimetic applications [5,6].

Approach Our objective is to use spectral Mueller-matrix data on scarab beetles to parameterize reflection properties in terms of polarization parameters and degree of polarization. The studied beetles all are phytophagous and include species from the Cetoniinae subfamily (e.g. Cetonia aurata and Coptomia laevis,), the Rutelinae subfamily (e.g. Chrysina argenteola and Chrysina resplendens) and the Melolonthinae subfamily (Cyphochilus insulanus). Furthermore, structural modeling is presented on Cetonia aurata and a few more beetles to demonstrate that structural parameters can be extracted by advanced modeling of Mueller-matrix data.

Experimental A dual rotating compensator ellipsometer (RC2, J. A. Woollam Co., Inc.) is used to record all 16 Mueller-matrix elements mij (i,j=1..4) in the spectral range 300 – 900 nm at angles of incidence in the range 20-70º. The elements are normalized to m11 and thus have values between -1 and +1. All measurements are performed on the scutellum (a small triangular part on the dorsal side of the beetles) with focusing optics resulting in a spot size of the order of 50-100 mm. The software CompleteEASE (J. A. Woollam Co., Inc.) is used for analysis.

Results and discussion As an example, Fig. 1 shows contour plots of Mueller-matrix data measured on Cetonia aurata. This beetle has a metallic shine and if illuminated with unpolarized white light it reflects left-handed polarized green light as revealed by the non-zero Mueller-matrix elements m14 and m41 in the green spectral region for angles of incidence below about 45º. This is clearly seen in the graph to the right in Fig. 1 which shows a spectrum for Mueller-matrix element m41at 20º as well as fitted model data. A model based on a twisted lamella structure, also called Bouligand structure, is used to model the chiral nanostructure [4]. Given the complexity of the nanostructure, an excellent model fit is achieved. The obtained model parameters are the spectral variation of the refractive index of the birefringent lamellas and the pitch. The model also includes a dielectric surface layer.




Fig.1. Left: Mueller-matrix data on Cetonia aurata. Each contour plot shows mij, where i and j correspond to the row and column, respectively. m11 =1 and is not shown but is replaced with a photo of the beetle. Right: Experimental and model-generated Mueller-matrix element m41at an angle of incidence of 20º.


From the Mueller-matrix data one can also determine so called derived parameters including azimuth and ellipticity of the polarization ellipse and the degree of polarization. The variations of these parameters with angle of incidence are presented for a selection of scarab beetles. Examples of both left-handed and right-handed polarization effects are shown and the importance of degree of polarization will be discussed.

Concluding remarks Mueller-matrix spectra at oblique incidence are very rich in information about reflection properties and allows parameterization of polarization parameters of the reflected light. Both left-handed and right-handed reflected light is found in scarab beetles. Mueller-matrix data can also be used for a detailed modeling of the nanostructure of the cuticle of beetles.

AcknowledgementsFinancial support was obtained from the Knut and Alice Wallenberg foundation and the Swedish Research Council. The Museum of Natural History in Stockholm, the National Museum of Natural Science in Madrid, the Berlin Museum of Natural History and the Natural History Museum in London are acknowledged for loan of beetles.



  1. Michelson, A. A. “On Metallic Colouring in Birds and Insects,” Phil. Mag., 21, 554-567, 1911.
  2. Goldstein, D. H. “Polarization properties of Scarabaeidae,” Appl. Opt., 45, 7944-7950, 2006.
  3. Hodgkinson, I., Lowrey, S., Bourke, L., Parker, A. and McCall, M. W. “Mueller-matrix characterization of beetle cuticle polarized and unpolarized reflections from representative architectures,” Appl. Opt., 49, 4558-4567, 2010.
  4. Vukusic, P. and Sambles, J. R. “Photonic structures in biology,” Nature, 424, 852-855, 2003.
  5. Lenau, T. and Barfoed, M. “Colours and Metallic Sheen in Beetle Shells - A Biomimetic Search for Material Structuring Principles Causing Light Interference,” Adv. Eng. Mat., 10, 299-314. 2008.
  6. Parker, A. R. and Townley, H. E “Biomimetics of photonic nanostructures,” Nature Nanotech., 2, 347-351, 2007.
Place, publisher, year, edition, pages
Keyword [en]
Mueller-matrix ellipsometry; scarab beetles
National Category
Physical Sciences
URN: urn:nbn:se:liu:diva-86504OAI: diva2:578311
Advanced Electromagnetics Symposium (AES 2012), April 16-19, 2012, Paris, France
Natural Photonic Nanostructures
Swedish Research Council, 621-2011-4283Knut and Alice Wallenberg Foundation
Available from: 2012-12-18 Created: 2012-12-18 Last updated: 2015-09-22

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Arwin, HansBerlind, TorunBirch, JensLandin, JanMagnusson, RogerÅkerlind, ChristinaJärrendahl, Kenneth
By organisation
Applied Optics The Institute of TechnologyThin Film PhysicsBiology
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 379 hits
ReferencesLink to record
Permanent link

Direct link