liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Potentiometric glucose sensor based on the glucose oxidase immobilized iron ferrite magnetic particle/chitosan composite modified gold coated glass electrode
Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
King Saud University, Saudi Arabia King Saud University, Saudi Arabia .
Show others and affiliations
2012 (English)In: Sensors and actuators. B, Chemical, ISSN 0925-4005, E-ISSN 1873-3077, Vol. 173, 698-703 p.Article in journal (Refereed) Published
Abstract [en]

A potentiometric glucose sensor based on the glucose oxidase immobilized on iron ferrite (Fe3O4) nanoparticles/chitosan composite modified gold coated glass substrate was fabricated. The electrode has advantages of both the inorganic Fe3O4 magnetic nanoparticles and the organic substance chitosan. The freshly prepared iron ferrite magnetic nanoparticles were characterized by X-ray diffraction (xRD) and transmission electron microscopy (TEM) technique was used for the analysis of dispersed iron ferrite magnetic nanoparticles in the mixture of glucose oxidase and chitosan. The electrostatic interaction of Fe3O4 nanoparticles with chitosan and the glucose oxidase molecules was investigated by the infra-red reflection absorption spectroscopy (IRAS) study. The glucose oxidase enzyme was immobilized on the surface of iron ferrite/chitosan composite without the use of Nafion or cross linker molecules. The fabricated glucose sensor has shown acceptable potentiometric response for the wide range of glucose concentrations from 1.0 x 10(-6) to 3.0 x 10(-2) M. The sensor electrode showed a sensitivity of 27.3 +/- 0.8 mV/decade and also fast response time of 7.0s. Moreover, the present glucose sensor has demonstrated good reproducibility, repeatability, selectivity and the storage stability. All the obtained results indicated that the glucose sensor based on the glucose oxidase immobilized iron ferrite/chitosan composite modified gold coated glass electrode can be used for the monitoring of glucose concentrations in human serum, drugs and may be applicable to detect glucose in the presence of other analytes.

Place, publisher, year, edition, pages
Elsevier , 2012. Vol. 173, 698-703 p.
Keyword [en]
Iron ferrite, Magnetic nanoparticles, Potentiometric, Immobilization, Glucose oxidase, IR study
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-86659DOI: 10.1016/j.snb.2012.07.074ISI: 000311248100098OAI: oai:DiVA.org:liu-86659DiVA: diva2:580082
Note

Funding Agencies|Scientific Research at King Saud University|RGP-VPP-023|

Available from: 2012-12-20 Created: 2012-12-20 Last updated: 2017-12-06
In thesis
1. Synthesis of metal oxide nanostructures, their characterization and chemical sensing applications
Open this publication in new window or tab >>Synthesis of metal oxide nanostructures, their characterization and chemical sensing applications
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The existence of nanomaterials is a revolutionizing step towards the fabrication of nanodevices and it enhances the enthusiasm of the researchers for the development of new devices with improved performance relative to that of bulk material based devices. Among the nanomaterials, the metal oxide nanostructures have drawn the attention of scientific community in the development of different biochemical and biomedical nanodevices in the recent time. Today, the nanotechnology based applications of several materials particularly biosensing, molecular imaging, biological separation, biomarkers and photodynamic therapy have given wide spectrum of the fabrication of novel and sensitive nanodevices. The attraction of nanomaterials based devices is hidden in the fact of their desirable and unique properties such as high surface to volume ratio, biocompatibility, fast electron transfer rate, and nontoxic in many cases. The biocompatibility is the most favourable property of several nanomaterials such as ZnO, TiO2 etc. which provide the solid platform for the synthesis of nanomedicine. In the sensor technology, the uses of nanomaterials have shown the drastic and bombastic realization of high sensitivity for a particular sensor and the possible detection of specific analytes from their small volumes. The metal oxide nanostructures show a fast electron communication, and high degree of adsorption of biosensitive material which further enhances the sensitivity of nanosensor device. The metal oxides nanostructures  exhibit tuneable size; morphology based chemical and physical properties which are easily to combine with biosensitive material in the fabrication of sensitive chemical and biosensors. The metal oxide nanostructures experienced attractive surface chemistry, high surface  to volume ratio, valuable thermal and electrical properties, therefore the development of nanosensors is accompanied by high sensitivity, low limit of detection and a fast response time.

In this dissertation, several metal oxide nanostructures have been presented such as ZnO, CuO, NiO, Co3O4, Fe2O3, Mn3O4, NiCo2O4 and TiO2. By exploiting the favourable properties of these metal oxides for the sensing, thus have been used potentially in the fabrication of chemical nanosensors.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2014. 56 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1577
Keyword
Hydrothermal method, seed layer, ZnO nanorods, ZnO nanotubes, immunosensor, iron ferrite, glucose sensor, well aligned ZnO nanorods, CuO nanoleaves, CuO nanosheets, CuO bundle of nanowires
National Category
Natural Sciences
Identifiers
urn:nbn:se:liu:diva-104422 (URN)978-91-7519-394-6 (ISBN)
Public defence
2014-03-20, K 3, Kåkenhus, Campus Norrköping, Linköpings universitet, Norrköping, 10:00 (English)
Opponent
Supervisors
Available from: 2014-02-17 Created: 2014-02-17 Last updated: 2014-02-17Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Khun, KimleangIbupoto, Zafar HussainLu, JunWillander, Magnus

Search in DiVA

By author/editor
Khun, KimleangIbupoto, Zafar HussainLu, JunWillander, Magnus
By organisation
Department of Science and TechnologyThe Institute of TechnologyThin Film PhysicsPhysics and Electronics
In the same journal
Sensors and actuators. B, Chemical
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 406 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf