liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
The space of solution alternatives in the optimal lotsizing problem for general assembly systems applying MRP theory
Linköping University, Department of Management and Engineering, Production Economics. Linköping University, The Institute of Technology.
Linköping University, Department of Management and Engineering, Production Economics. Linköping University, The Institute of Technology.
2012 (English)In: International Journal of Production Economics, ISSN 0925-5273, Vol. 140, no 2, 765-777 p.Article in journal (Refereed) Published
Abstract [en]

MRP Theory combines the use of Input-Output Analysis and Laplace transforms, enabling the development of a theoretical background for multi-level, multi-stage production-inventory systems together with their economic evaluation, in particular applying the Net Present Value principle (NPV). less thanbrgreater than less thanbrgreater thanIn a recent paper (Grubbstrom et al., 2010), a general method for solving the dynamic lotsizing problem for a general assembly system was presented. It was shown there that the optimal production (completion) times had to be chosen from the set of times generated by the Lot-For-Lot (L4L) solution. Thereby, the problem could be stated in binary form by which the values of the binary decision variables represented either to make a production batch, or not, at each such time. Based on these potential times for production, the problem of maximising the Net Present Value or minimising the average cost could be solved, applying a single-item optimal dynamic lotsizing method, such as the Wagner-Whitin algorithm or the Triple Algorithm, combined with dynamic programming. less thanbrgreater than less thanbrgreater thanThis current paper follows up the former paper by investigating the complexity defined as the number of possible feasible solutions (production plans) to compare. We therefore investigate how properties of external demand timing and properties of requirements (Bill-of-Materials) have consequences on the size of this solution space. Explicit expressions are developed for how the total number of feasible production plans depends on numbers of external demand events on different levels for, in particular, the two extreme cases of a serial system and a full system (the latter, in which items have requirements of all existing types of subordinate items). A formula is also suggested for general systems falling in between these two extremes. For the most complex full system, it is shown that the number of feasible plans will be the product of elements taken from Sylvesters sequence (an instance of doubly exponential sequences) raised to powers depending on numbers of external demand events.

Place, publisher, year, edition, pages
Elsevier , 2012. Vol. 140, no 2, 765-777 p.
Keyword [en]
MRP theory, Optimal lotsizing, Assembly system, Laplace transform, Complexity
National Category
Engineering and Technology
URN: urn:nbn:se:liu:diva-86635DOI: 10.1016/j.ijpe.2011.01.012ISI: 000311193200025OAI: diva2:580108
Available from: 2012-12-20 Created: 2012-12-20 Last updated: 2013-01-09

Open Access in DiVA

fulltext(464 kB)275 downloads
File information
File name FULLTEXT01.pdfFile size 464 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Grubbström, Robert WTang, Ou
By organisation
Production EconomicsThe Institute of Technology
In the same journal
International Journal of Production Economics
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 275 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 80 hits
ReferencesLink to record
Permanent link

Direct link