liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Topology optimization of hyperelastic bodies including non-zero prescribed displacements
Linköping University, Department of Management and Engineering, Mechanics. Linköping University, The Institute of Technology.ORCID iD: 0000-0001-8460-0131
Department of Mechanical Engineering, Jönköping University, Sweden.
2013 (English)In: Structural and multidisciplinary optimization (Print), ISSN 1615-147X, E-ISSN 1615-1488, Vol. 47, no 1, p. 37-48Article in journal (Refereed) Published
Abstract [en]

Stiffness topology optimization is usually based on a state problem of linear elasticity, and there seems to be little discussion on what is the limit for such a small rotation-displacement assumption. We show that even for gross rotations that are in all practical aspects small (<3 deg), topology optimization based on a large deformation theory might generate different design concepts compared to what is obtained when small displacement linear elasticity is used. Furthermore, in large rotations, the choice of stiffness objective (potential energy or compliance), can be crucial for the optimal design concept. The paper considers topology optimization of hyperelastic bodies subjected simultaneously to external forces and prescribed non-zero displacements. In that respect it generalizes a recent contribution of ours to large deformations, but we note that the objectives of potential energy and compliance are no longer equivalent in the non-linear case. We use seven different hyperelastic strain energy functions and find that the numerical performance of the Kirchhoff–St.Venant model is in general significantly worse than the performance of the other six models, which are all modifications of this classical law that are equivalent in the limit of infinitesimal strains, but do not contain the well-known collapse in compression. Numerical results are presented for two different problem settings.

Place, publisher, year, edition, pages
Springer, 2013. Vol. 47, no 1, p. 37-48
Keywords [en]
Hyperelasticity, Potential energy, Compliance, Optimality criteria
National Category
Applied Mechanics
Identifiers
URN: urn:nbn:se:liu:diva-86747DOI: 10.1007/s00158-012-0819-zISI: 000312878800004OAI: oai:DiVA.org:liu-86747DiVA, id: diva2:581999
Funder
Swedish Research CouncilAvailable from: 2013-01-03 Created: 2013-01-03 Last updated: 2017-12-06

Open Access in DiVA

fulltext(2101 kB)1067 downloads
File information
File name FULLTEXT01.pdfFile size 2101 kBChecksum SHA-512
b1bbf072d58bc20e49a3f2b3cce703b6c58e0ab5a3a279917132497cb8b23fc8607b8aeeb21ff08254b2d676a27899c6036a64c5aabd3d487297bfa297cc80c7
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records

Klarbring, Anders

Search in DiVA

By author/editor
Klarbring, Anders
By organisation
MechanicsThe Institute of Technology
In the same journal
Structural and multidisciplinary optimization (Print)
Applied Mechanics

Search outside of DiVA

GoogleGoogle Scholar
Total: 1067 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 316 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf