liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Structural and mechanical properties of Cr-Al-O-N thin films grown by cathodic arc deposition
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
SECO Tools AB, Sweden .
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.ORCID iD: 0000-0002-4898-5115
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
Show others and affiliations
2012 (English)In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 60, no 19, p. 6494-6507Article in journal (Refereed) Published
Abstract [en]

Coatings of (CrxAl1-x)(delta)(O1-yNy)(xi) with 0.33 less than= x less than= 0.96, 0 less than= y less than= 1 and 0.63 less than= delta/xi less than= 1.30 were deposited using cathodic arc evaporation in N-2/O-2 reactive gas mixtures on 50 V negatively biased WC-10 wt.% Co substrates from different Cr and Al alloys with three different Cr/Al compositional ratios. For N-2 less than 63% of the total gas, ternary (Cr,Al)(2)O-3 films containing less than1 at.% of N forms; as determined by elastic recoil detection analysis. Increasing the N-2 fraction to 75% and above results in formation of quaternary oxynitride films. Phase analyses of the films by X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy show the predominance of cubic Cr-Al-N and cubic-(Cr,Al)(2)O-3 solid solutions and secondary hexagonal alpha-(Cr,Al)(2)O-3 solid solution. High Cr and Al contents result in films with higher roughness, while high N and O contents result in smoother surfaces. Nanoindentation hardness measurements showed that Al-rich oxide or nitride films have hardness values of 24-28 GPa, whereas the oxynitride films have a hardness of similar to 30 GPa, regardless of the Cr and Al contents. Metal cutting performance tests showed that the good wear properties are mainly correlated to the oxygen-rich coatings, regardless of the cubic or corundum fractions.

Place, publisher, year, edition, pages
Elsevier , 2012. Vol. 60, no 19, p. 6494-6507
Keyword [en]
Physical vapor deposition; Solid solution; Face-centered cubic crystals; Alumina (alpha-Al2O3); Oxynitride
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-87218DOI: 10.1016/j.actamat.2012.08.010ISI: 000311188400006OAI: oai:DiVA.org:liu-87218DiVA, id: diva2:587406
Available from: 2013-01-14 Created: 2013-01-14 Last updated: 2017-12-06
In thesis
1. Growth and Heat Treatment Studies of Al-Cr-O and Al-Cr-O-N Thin Films
Open this publication in new window or tab >>Growth and Heat Treatment Studies of Al-Cr-O and Al-Cr-O-N Thin Films
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Aluminum oxide based thin films are applied on cutting tool inserts as a top layer to protect the underlying nitride or carbide functional layer from the harsh working environment in terms of abrasive and chemical wear under thermal and pressure load. This Thesis explores the synthesis and characterization of the next generations of multifunctional wear-resistant thin film coatings in the form of Al-Cr-O and Al-Cr-O-N compounds. The experiments include the deposition of oxide films by reactive magnetron sputtering and cathodic arc evaporation as well as investigation of structural and mechanical properties in as-deposited and annealed states. Ternary (Al1-xCrx)2+yO3-y films were deposited on Si(001) and WC-Co substrates kept at 400-575 °C from elemental Al and Cr or alloyed Al/Cr cathodes in Ar/O2, O2/N2, and pure O2 atmospheres. Also, quaternary (Al1-xCrx)2+z(O1-yNy)3-z films were deposited at substrate temperature of ~400 °C on WC-Co substrates in O2/N2 atmosphere. X-ray diffraction and analytical electron microscopy combined with ab initio calculations showed the existence of a new face centered cubic (Al,Cr)2O3 phase with 33% vacancies on the metallic Al/Cr sites. Increasing the temperature during annealing of these metastable cubic films resulted in phase transformation to corundum solid solution in the temperature range of 900-1100 °C. The apparent activation energy of this phase transformation process was calculated as 380-480 kJ/mol by using the Johnson-Mehl-Avrami model. The mechanical properties of the cubic and corundum oxide films were measured in terms of nanoindentation hardness and metal cutting performance. The cubic and corundum films showed hardness values of 26-28 GPa and 28-30 GPa, respectively. The oxynitride solid solution films showed to be predominantly cubic Al-Cr-N and cubic-(Al,Cr)2O3 and secondary corundum-(Al,Cr)2O3 with a hardness of ~30 GPa, slightly higher than Al-rich ternary oxides. Metal cutting performance tests showed that the good wear properties are mainly correlated to the oxygen-rich coatings, regardless of the cubic or corundum fractions.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2013. p. 79
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1497
National Category
Natural Sciences
Identifiers
urn:nbn:se:liu:diva-87668 (URN)978-91-7519-710-4 (ISBN)
Public defence
2013-02-12, Planck, Fysikhuset, Campus Valla, Linköpings universitet, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2013-01-21 Created: 2013-01-21 Last updated: 2016-08-31Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Khatibi, AliGreczynski, GrzegorzJensen, JensEklund, PerHultman, Lars

Search in DiVA

By author/editor
Khatibi, AliGreczynski, GrzegorzJensen, JensEklund, PerHultman, Lars
By organisation
Thin Film PhysicsThe Institute of Technology
In the same journal
Acta Materialia
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 385 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf