LiU Electronic Press
Download:
File size:
129 kb
Format:
application/pdf
Author:
Kleiner, Alexander (Linköping University, Department of Computer and Information Science, Artificial Intelligence and Intergrated Computer systems) (Linköping University, The Institute of Technology) (Collaborative Robotics)
Farinelli, A. (University of Verona, Italy)
Ramchurn, S. (University of Southampton, UK)
Shi, B. (Wuhan University of Tec., China)
Maffioletti, F. (University of Verona, Italy)
Reffato, R. (University of Verona, Italy)
Title:
RMASBench: Benchmarking Dynamic Multi-Agent Coordination in Urban Search and Rescue
Department:
Linköping University, Department of Computer and Information Science, Artificial Intelligence and Intergrated Computer systems
Linköping University, The Institute of Technology
Publication type:
Conference paper (Refereed)
Language:
English
In:
Proc. of the 12th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2013)
Conference:
12th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2013)
Pages:
1195-1196
Year of publ.:
2013
URI:
urn:nbn:se:liu:diva-87290
Permanent link:
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-87290
ISBN:
978-1-4503-1993-5
Subject category:
Computer Science
Computer Vision and Robotics (Autonomous Systems)
Project:
Artificial Intelligence & Integrated Computer Systems
Abstract(en) :

We propose RMASBench, a new benchmarking tool based on the RoboCup Rescue Agent simulation system, to easily compare coordination approaches in a dynamic rescue scenario. In particular, we offer simple interfaces to plug-in coordination algorithms without the need for implementing and tuning low-level agents behaviors. Moreover, we add to the realism of the simulation by providing a large scale crowd simulator, which exploits GPUs parallel architecture, to simulate the behavior of thousands of agents in real time. Finally, we focus on a specific coordination problem where fire fighters must combat fires and prevent them from spreading across the city. We formalize this problem as a Distributed Constraint Optimization Problem and we compare two state-of-the art solution techniques: DSA and MaxSum. We perform an extensive empirical evaluation of such techniques considering several standard measures for performance (e.g. damages to buildings) and coordination overhead (e.g., message exchanged and non concurrent constraint checks). Our results provide interesting insights on limitations and benefits of DSA and MaxSum in our rescue scenario and demonstrate that RMASBench offers powerful tools to compare coordination algorithms in a dynamic environment.

Research funder:
eLLIIT - The Linköping‐Lund Initiative on IT and Mobile Communications, 1025
Available from:
2013-01-16
Created:
2013-01-15
Last updated:
2013-08-08
Statistics:
0 hits
FILE INFORMATION
File size:
129 kb
Mimetype:
application/pdf
Type:
fulltext
Statistics:
0 hits
Version:
Preprint