liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Four-dimensional blood flow-specific markers of LV dysfunction in dilated cardiomyopathy
Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Cardiology. Linköping University, Faculty of Health Sciences.
Linköping University, Department of Medical and Health Sciences, Clinical Physiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Centre, Department of Clinical Physiology UHL.
Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Physiology. Linköping University, Faculty of Health Sciences. Linköping University, Department of Science and Technology, Media and Information Technology.ORCID iD: 0000-0003-1395-8296
Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Clinical Physiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Centre, Department of Clinical Physiology UHL.ORCID iD: 0000-0003-2198-9690
2013 (English)In: European Heart Journal Cardiovascular Imaging, ISSN 2047-2404, E-ISSN 2047-2412, Vol. 14, no 5, 417-424 p.Article in journal (Refereed) Published
Abstract [en]

Aims : Patients with mild heart failure (HF) who are clinically compensated may have normal left ventricular (LV) stroke volume (SV). Despite this, altered intra-ventricular flow patterns have been recognized in these subjects. We hypothesized that, compared with normal LVs, flow in myopathic LVs would demonstrate a smaller proportion of inflow volume passing directly to ejection and diminished the end-diastolic preservation of the inflow kinetic energy (KE).

Methods and results : In 10 patients with dilated cardiomyopathy (DCM) (49 ± 14 years, six females) and 10 healthy subjects (44 ± 17 years, four females), four-dimensional MRI velocity and morphological data were acquired. A previously validated method was used to separate the LV end-diastolic volume (EDV) into four flow components based on the blood's locations at the beginning and end of the cardiac cycle. KE was calculated over the cardiac cycle for each component. The EDV was larger (P = 0.021) and the ejection fraction smaller (P < 0.001) in DCM compared with healthy subjects; the SV was equivalent (DCM: 77 ± 19, healthy: 79 ± 16 mL). The proportion of the total LV inflow that passed directly to ejection was smaller in DCM (P = 0.000), but the end-diastolic KE/mL of the direct flow was not different in the two groups (NS).

Conclusion : Despite equivalent LVSVs, HF patients with mild LV remodelling demonstrate altered diastolic flow routes through the LV and impaired preservation of inflow KE at pre-systole compared with healthy subjects. These unique flow-specific changes in the flow route and energetics are detectable despite clinical compensation, and may prove useful as subclinical markers of LV dysfunction.

Place, publisher, year, edition, pages
Oxford University Press, 2013. Vol. 14, no 5, 417-424 p.
Keyword [en]
4D flow, Heart failure, Magnetic resonance imaging, Stroke volume
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:liu:diva-87616DOI: 10.1093/ehjci/jes159ISI: 000318088300003PubMedID: 22879457OAI: oai:DiVA.org:liu-87616DiVA: diva2:589755
Available from: 2013-01-19 Created: 2013-01-19 Last updated: 2017-12-06
In thesis
1. Quantification of 4D Left Ventricular Blood Flow in Health and Disease
Open this publication in new window or tab >>Quantification of 4D Left Ventricular Blood Flow in Health and Disease
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The main function of the heart is to pump blood throughout the cardiovascular system by generating pressure differences created through volume changes. Although the main purpose of the heart and vessels is to lead the flowing blood throughout the body, clinical assessments of cardiac function are usually based on morphology, approximating the flow features by viewing the motion of the myocardium and vessels. Measurement of three-directional, three-dimensional and time-resolved velocity (4D Flow) data is feasible using magnetic resonance (MR). The focus of this thesis is the development and application of methods that facilitate the analysis of larger groups of data in order to increase our understanding of intracardiac flow patterns and take the 4D flow technique closer to the clinical setting.

In the first studies underlying this thesis, a pathline based method for analysis of intra ventricular blood flow patterns has been implemented and applied. A pathline is integrated from the velocity data and shows the path an imaginary massless particle would take through the data volume. This method separates the end-diastolic volume (EDV) into four functional components, based on the position for each individual pathline at end-diastole (ED) and end-systole (ES). This approach enables tracking of the full EDV over one cardiac cycle and facilitates calculation of parameters such as e.g. volumes and kinetic energy (KE). Besides blood flow, pressure plays an important role in the cardiac dynamics. In order to study this parameter in the left ventricle, the relative pressure field was computed using the pressure Poisson equation. A comprehensive presentation of the pressure data was obtained dividing the LV blood pool into 17 pie-shaped segments based on a modification of the standard seventeen segment model. Further insight into intracardiac blood flow dynamics was obtained by studying the turbulent kinetic energy (TKE) in the LV. The methods were applied to data from a group of healthy subjects and patients with dilated cardiomyopathy (DCM). DCM is a pathological state where the cardiac function is impaired and the left ventricle or both ventricles are dilated.

The validation study of the flow analysis method showed that a reliable user friendly tool for intra ventricular blood flow analysis was obtained. The application of this tool also showed that roughly one third of the blood that enters the LV, directly leaves the LV again in the same heart beat. The distribution of the four LV EDV components was altered in the DCM group as compared to the healthy group; the component that enters and leaves the LV during one cardiac cycle (Direct Flow) was significantly larger in the healthy subjects. Furthermore, when the kinetic energy was normalized by the volume for each component, at time of ED, the Direct Flow had the highest values in the healthy subjects. In the DCM group, however, the Retained Inflow and Delayed Ejection Flow had higher values. The relative pressure field showed to be highly heterogeneous, in the healthy heart. During diastole the predominate pressure differences in the LV occur along the long axis from base to apex. The distribution and variability of 3D pressure fields differ between early and late diastolic filling phases, but common to both phases is a relatively lower pressure in the outflow segment. In the normal LV, TKE values are low. The highest TKE values can be seen during early diastole and are regionally distributed near the basal LV regions. In contrast, in a heterogeneous group of DCM patients, total diastolic and late diastolic TKE values are higher than in normals, and increase with the LV volume.

In conclusion, in this thesis, methods for analysis of multidirectional intra cardiac velocity data have been obtained. These methods allow assessment of data quality, intra cardiac blood flow patterns, relative pressure fields, and TKE. Using these methods, new insights have been obtained in intra cardiac blood flow dynamics in health and disease. The work underlying this thesis facilitates assessment of data from a larger population of healthy subjects and patients, thus bringing the 4D Flow MRI technique closer to the clinical setting.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2013. 63 p.
Series
Linköping University Medical Dissertations, ISSN 0345-0082 ; 1374
Keyword
MRI, relative pressure, 4D flow, quantification, turbulent kinetic energy, dilated cardiomyopathy, magnetic resonance imaging, physiology, cardiac function, diastolic dysfunction
National Category
Medical and Health Sciences
Identifiers
urn:nbn:se:liu:diva-98786 (URN)10.3384/diss.diva-99958 (DOI)978-91-7519-542-1 (ISBN)
Public defence
2013-11-22, Berzeliussalen, Campus US, Linköpings universitet, Linköping, 09:00 (English)
Opponent
Supervisors
Available from: 2013-10-14 Created: 2013-10-14 Last updated: 2014-04-23Bibliographically approved

Open Access in DiVA

fulltext(810 kB)296 downloads
File information
File name FULLTEXT01.pdfFile size 810 kBChecksum SHA-512
391b5939e3042ea848c8b63f029455daa316709d1139210b74cc6d0f91c3a72c5be1ca59376250a89d8d2b4b9516787359728205e15f3a9fa167e42a50ef23d9
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMed

Authority records BETA

Eriksson, JonatanBolger, Ann F.Ebbers, TinoCarlhäll, Carl-Johan

Search in DiVA

By author/editor
Eriksson, JonatanBolger, Ann F.Ebbers, TinoCarlhäll, Carl-Johan
By organisation
Center for Medical Image Science and Visualization, CMIVCardiologyFaculty of Health SciencesClinical PhysiologyDepartment of Clinical Physiology UHLPhysiologyMedia and Information Technology
In the same journal
European Heart Journal Cardiovascular Imaging
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 296 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 298 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf