liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Applying representational state transfer (REST) architecture to archetype-based electronic health record systems
Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.ORCID iD: 0000-0001-6468-2432
Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Medical Informatics.
Show others and affiliations
2013 (English)In: BMC Medical Informatics and Decision Making, ISSN 1472-6947, E-ISSN 1472-6947, Vol. 13, no 57Article in journal (Refereed) Published
Abstract [en]

Background

The openEHR project and the closely related ISO 13606 standard have defined structures supporting the content of Electronic Health Records (EHRs). However, there is not yet any finalized openEHR specification of a service interface to aid application developers in creating, accessing, and storing the EHR content.

The aim of this paper is to explore how the Representational State Transfer (REST) architectural style can be used as a basis for a platform-independent, HTTP-based openEHR service interface. Associated benefits and tradeoffs of such a design are also explored.

Results

The main contribution is the formalization of the openEHR storage, retrieval, and version-handling semantics and related services into an implementable HTTP-based service interface. The modular design makes it possible to prototype, test, replicate, distribute, cache, and load-balance the system using ordinary web technology. Other contributions are approaches to query and retrieval of the EHR content that takes caching, logging, and distribution into account. Triggering on EHR change events is also explored.

A final contribution is an open source openEHR implementation using the above-mentioned approaches to create LiU EEE, an educational EHR environment intended to help newcomers and developers experiment with and learn about the archetype-based EHR approach and enable rapid prototyping.

Conclusions

Using REST addressed many architectural concerns in a successful way, but an additional messaging component was needed to address some architectural aspects. Many of our approaches are likely of value to other archetype-based EHR implementations and may contribute to associated service model specifications.

Place, publisher, year, edition, pages
BioMed Central, 2013. Vol. 13, no 57
National Category
Information Systems
Identifiers
URN: urn:nbn:se:liu:diva-87696DOI: 10.1186/1472-6947-13-57ISI: 000320998000001OAI: oai:DiVA.org:liu-87696DiVA: diva2:599722
Available from: 2013-01-22 Created: 2013-01-22 Last updated: 2017-12-06
In thesis
1. Scalability and Semantic Sustainability in Electronic Health Record Systems
Open this publication in new window or tab >>Scalability and Semantic Sustainability in Electronic Health Record Systems
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This work is a small contribution to the greater goal of making software systems used in healthcare more useful and sustainable. To come closer to that goal, health record data will need to be more computable and easier to exchange between systems.

Interoperability refers to getting systems to work together and semantics concerns the study of meanings. If Semantic interoperability is achieved then information entered in one information system is usable in other systems and reusable for many purposes. Scalability refers to the extent to which a system can gracefully grow by adding more resources. Sustainability refers more to how to best use available limited resources. Both aspects are important.

The main focus and aim of the thesis is to increase knowledge about how to support scalability and semantic sustainability. It reports explorations of how to apply aspects of the above to Electronic Health Record (EHR) systems, associated infrastructure, data structures, terminology systems, user interfaces and their mutual boundaries.

Using terminology systems is one way to improve computability and comparability of data. Modern complex ontologies and terminology systems can contain hundreds of thousands of concepts that can have many kinds of relationships to multiple other concepts. This makes visualization challenging. Many visualization approaches designed to show the local neighbourhood of a single concept node do not scale well to larger sets of nodes. The interactive TermViz approach described in this thesis, is designed to aid users to navigate and comprehend the context of several nodes simultaneously. Two applications are presented where TermViz aids management of the boundary between EHR data structures and the terminology system SNOMED CT.

The amount of available time from people skilled in health informatics is limited. Adequate methods and tools are required to develop, maintain and reuse health-IT solutions in a sustainable way. Multiple levels of modelling including a fixed reference model and another layer of flexible reusable ‘archetypes’ for domain specific data structures, is an approach with that aim used in openEHR and the ISO 13606 standard. This approach, including learning, implementing and managing it, is explored from different angles in this thesis. An architecture applying Representational State Transfer (REST) to archetype-based EHR systems, in order to address scalability, is presented. Combined with archetyping this architecture also aims at enabling a sustainable way of continuously evolving multi-vendor EHR solutions. An experimental open source implementation of it, aimed for learning and prototyping, is also presented.

Manually changing database structures used for storage every time new versions of archetypes and associated data structures are needed is likely not a sustainable activity. Thus storage systems that can handle change with minimal manual interventions are desirable. Initial explorations of performance and scalability in such systems are also reported

Graphical user interfaces focused on EHR navigation, time-perspectives and highlighting of EHR content are also presented – illustrating what can be done with computable health record data and the presented approaches.

Desirable aspects of semantic sustainability have been discussed, including: sustainable use of limited resources (such as available time of skilled people), and reduction of unnecessary risks. A semantic sustainability perspective should be inspired and informed by research in complex systems theory, and should also include striving to be highly aware of when and where technical debt is being built up. Semantic sustainability is a shared responsibility.

The combined results presented contribute to increasing knowledge about ways to support scalability and semantic sustainability in the context of electronic health record systems. Supporting tools, architectures and approaches are additional contributions.

Abstract [sv]

Syftet med denna avhandling är ytterst att göra informationssystem som används i hälso- och sjukvård, särskilt patientjournaler, mer användbara och lättarbetade. Om systemen vore lättare att utveckla och underhålla skulle fler resurser kunna läggas på att tillföra nya och mer användarvänliga funktioner.

Om journalsystem och datorprogram kan ”begripa” vad olika saker i journalen är och betyder så kan de vara till större hjälp, t.ex. genom att visa bättre patientöversikter och bidra med beslutsstöd. En del i att göra journalinnehållet begripligt och hanterbart för datorer är att använda sig av terminologisystem som t.ex. ICD-10 och SNOMED CT. En annan viktig del är datastrukturerna där man stoppar in text, mätvärden, koderna från terminologisystem etc. De flesta journalsystem har någon sorts mallar som datastrukturer. Projektet openEHR har tagit fram ett sätt att dela specifikationer av datastrukturer mellan olika journalsystem så att man lättare kan dela och återanvända dem och den journaldata som matats in i dem. Dessa specifikationer kallas ”arketyper” och arketyp-metoden beskrivs även i standarden ISO 13606.

Om två olika journalsystem använder samma datastruktur, t.ex. med hjälp av samma arketyper, så kan de utväxla patientdata mellan varandra (de uppnår s.k. semantisk interoperabilitet). Begreppet ”Semantic sustainability” definieras i avhandlingen som ett förhållningssätt som är bredare än semantisk interoperabilitet. Det syftar till att möjliggöra långsiktigt hållbar utveckling av semantik (betydelse) i journalsystem och genom att hantera risker och resurser förståndigt. Förhållningssättet baserar sig på forskning och erfarenheter från systemutveckling och hantering av komplexa system och är avsett att stödja beslutsfattare, och de som utvecklar och underhåller journalsystem, relaterade system och strukturer.

För att datorsystem ska kunna växa vid ökad användning ,utan att hamna i återvändsgränder avseende prestanda, så bör vissa designprinciper för skalbarhet följas. Avhandlingen presenterar en systemarkitektur baserad på sådana principer och på arketyp-metoden. Denna arkitektur gör det möjligt att bygga system med delsystem från flera olika leverantörer. Skalbarheten i några lagringslösningar redovisas också.

Slutligen redovisas prototyper av gränssnitt för patientöversikter och journalläsning.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2013. 204 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1499
National Category
Information Systems Other Medical Sciences not elsewhere specified Other Computer and Information Science Human Computer Interaction
Identifiers
urn:nbn:se:liu:diva-87702 (URN)978-91-7519-699-2 (ISBN)
Public defence
2013-02-15, Berzeliussalen, Campus US, Universitetssjukhuset, Linköping, 09:15 (English)
Opponent
Supervisors
Available from: 2013-01-22 Created: 2013-01-22 Last updated: 2014-10-08Bibliographically approved

Open Access in DiVA

fulltext(2687 kB)337 downloads
File information
File name FULLTEXT01.pdfFile size 2687 kBChecksum SHA-512
69664840e2939f8a9548f74fb02e495e29e7e27d33d905e1e1232db1375ca731772687516609f2d84889ced8f61d6c7fc9f3936f5ede931ae807279b2ec757a1
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records BETA

Sundvall, ErikNyström, MikaelKarlsson, DanielEneling, MartinChen, RongÖrman, Håkan

Search in DiVA

By author/editor
Sundvall, ErikNyström, MikaelKarlsson, DanielEneling, MartinChen, RongÖrman, Håkan
By organisation
Medical InformaticsThe Institute of Technology
In the same journal
BMC Medical Informatics and Decision Making
Information Systems

Search outside of DiVA

GoogleGoogle Scholar
Total: 337 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 784 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf