Recent research efforts in growth of 3C-SiC are reviewed. Sublimation growth is addressed with an emphasis on the enhanced understanding of polytype stability in relation to growth conditions, such as supersaturation and Si/C ratio. It is shown that at low temperature/supersaturation spiral 6H-SiC growth is favored, which prepares the surface for 3C-SiC nucleation. Provided the supersaturation is high enough, 3C-SiC nucleates as two-dimensional islands on terraces of the homoepitaxial 6H-SiC. Effect of different substrate surface preparations is considered. Typical extended defects and their electrical activity is discussed. Finally, possible novel applications are outlined.