liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Comparative study of ZnO nanorods and thin films for chemical and biosensing applications and the development of ZnO nanorods based potentiometric strontium ion sensor
Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
Show others and affiliations
2013 (English)In: Applied Surface Science, ISSN 0169-4332, E-ISSN 1873-5584, Vol. 268, 37-43 p.Article in journal (Refereed) Published
Abstract [en]

In this study, the comparative study of ZnO nanorods and ZnO thin films were performed regarding the chemical and biosensing properties and also ZnO nanorods based strontium ion sensor is proposed. ZnO nanorods were grown on gold coated glass substrates by the hydrothermal growth method and the ZnO thin films were deposited by electro deposition technique. ZnO nanorods and thin films were characterised by field emission electron microscopy [FESEM] and X-ray diffraction [XRD] techniques and this study has shown that the grown nanostructures are highly dense, uniform and exhibited good crystal quality. Moreover, transmission electron microscopy [TEM] was used to investigate the quality of ZnO thin film and we observed that ZnO thin film was comprised of nano clusters. ZnO nanorods and thin films were functionalised with selective strontium ionophore salicylaldehyde thiosemicarbazone [ST] membrane, galactose oxidase, and lactate oxidase for the detection of strontium ion, galactose and l-lactic acid, respectively. The electrochemical response of both ZnO nanorods and thin films sensor devices was measured by using the potentiometric method. The strontium ion sensor has exhibited good characteristics with a sensitivity of 28.65 +/- 0.52 mV/decade, for a wide range of concentrations from 1.00 x 10(-6) to 5.00 x 10(-2) M, selectivity, reproducibility, stability and fast response time of 10.00 s. The proposed strontium ion sensor was used as indicator electrode in the potentiometric titration of strontium ion versus ethylenediamine tetra acetic acid [EDTA]. This comparative study has shown that ZnO nanorods possessed better performance with high sensitivity and low limit of detection due to high surface area to volume ratio as compared to the flat surface of ZnO thin films.

Place, publisher, year, edition, pages
Elsevier , 2013. Vol. 268, 37-43 p.
Keyword [en]
ZnO nanorods, ZnO thin film, Immobilisation, Galactose oxidase, Lactate oxidase, Strontium ionophore, Potentiometric technique
National Category
Engineering and Technology
URN: urn:nbn:se:liu:diva-90674DOI: 10.1016/j.apsusc.2012.11.141ISI: 000315330300007OAI: diva2:614191
Available from: 2013-04-03 Created: 2013-04-03 Last updated: 2014-12-18
In thesis
1. Synthesising Metal Oxide Materials and Their Composite Nanostructures for Sensing and Optoelectronic Device Applications
Open this publication in new window or tab >>Synthesising Metal Oxide Materials and Their Composite Nanostructures for Sensing and Optoelectronic Device Applications
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Research on nanomaterials has been revolutionized in the last few years because of the attractive properties they have in comparison to the bulk phase of similar materials. These properties are physical, chemical, catalytic and optical. Among these nanomaterials, the metal oxide nanostructures have become of particular interest to scientists for the development of different optical, biochemical and biomedical nanodevices. In the present research work using the advantageous features of nanotechnology, high performance nanodevices for optoelectronics with a wide band gap compound nanostructure and highly sensitive sensor devices have been demonstrated. The nanotechnology is used to fabricate sensitive and precise nanodevices based on nanomaterials for the application of sensing.

Among metal oxide nanostructures, ZnO, CuO and NiO are attractive materials because of their unique properties; their high surface area to volume ratio, their energy band gap of 3.37 eV, 1.2 eV and 3.7 eV, respectively, biocompatibility, high electron mobility, fast electron transfer rate and they are environmental-friendly in many applications. When used in sensor devices, nanomaterials have indicated high selectivity for possible use to detect the various analytes even in small volumes. Metal oxide nanostructures have shown to be good for optoelectronic nanodevices because of their electrical characteristics, high optical absorption and low-processing temperature.

In this thesis, the synthesis of different morphologies of metal oxide semiconductor nanostructures and their composite using the hydrothermal method are demonstrated for various applications. This thesis is divided into three parts:

In the first part of this research work, the fabrication of well-aligned ZnO nanorods using different concentrations of composite seed layer of inorganic and organic materials when using the hydrothermal growth method is presented. The effect of the composite seed layer on the alignment, density and optical properties of the grown ZnO nanorods is investigated (paper I). Utilizing the advantage of ZnO nanostructure, a comparative study of ZnO nanorods and thin films for chemical and biosensing application was carried out. The ZnO nanorods and thin films were functionalized with strontium ionophore membrane, immobilized the galactose oxidase and lactate oxidase for determining the strontium ions, D-galactose and L-lactic acid, respectively (paper II).

In the second part, the effects of different urea concentrations on the morphology of CuO nanostructures is studied as described in paper III. Moreover, CuO nanoflowers were functionalized with cadmium ion ionophore for the detection of Cd ions, while CuO nanosheets were grown by the low temperature growth method and were used for the development of a nonenzymatic glucose sensor, respectively (Paper IV).

In the last part of this thesis, composite nanostructures of CuO/ZnO and NiO/ZnO were applied to develop dopamine sensor and fast sensitive UV photodetector, respectively. A nanohybrid of CuO/ZnO nanostructure was used as a non-enzymatic electrode to detect dopamine by cyclic voltammetry (CV) and amperometric techniques (Paper V). In paper VI, we have demonstrated a strong UV absorption from ZnO nano-sheets achieved by the supramoleculesassisted growth solution using the hydrothermal method. The synthesized nanomaterial was used in the fabrication of UV photodetector based on p-NiO/ n-ZnO heterostructures.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2014. 56 p.
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1628
Hydrothermal method; metal oxide nanostructure; composite seed solution; wellaligned ZnO nanorods; composite structures; glucose and dopamine non-enzymatic sensors; heavy metals; supramolecular; UV photodetector sensor
National Category
Physical Sciences Electrical Engineering, Electronic Engineering, Information Engineering
urn:nbn:se:liu:diva-112865 (URN)10.3384/diss.diva-112865 (DOI)978-91-7519-207-9 (print) (ISBN)
Public defence
2015-01-19, K3, Kåkenhus, Campus Norrköping, Linköpings universitet, Norrköping, 10:15 (English)
Available from: 2014-12-18 Created: 2014-12-18 Last updated: 2015-01-14Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Hussain Ibupoto, ZafarLu, JunNur, OmerWillander, Magnus
By organisation
Department of Science and TechnologyThe Institute of TechnologyThin Film PhysicsPhysics and Electronics
In the same journal
Applied Surface Science
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 119 hits
ReferencesLink to record
Permanent link

Direct link