liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
On the Influence of Water on the Electronic Structure of Firefly Oxyluciferin Anions from Absorption Spectroscopy of Bare and Monohydrated Ions in Vacuo
Aarhus University, Denmark .
Aarhus University, Denmark .
Aarhus University, Denmark .
Aarhus University, Denmark .
Show others and affiliations
2013 (English)In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 135, no 17, 6485-6493 p.Article in journal (Refereed) Published
Abstract [en]

A complete understanding of the physics underlying the varied colors of firefly bioluminescence remains elusive because it is difficult to disentangle different enzyme-lumophore interactions. Experiments on isolated ions are useful to establish a proper reference when there are no microenvironmental perturbations. Here, we use action spectroscopy to compare the absorption by the firefly oxyluciferin lumophore isolated in vacuo and complexed with a single water molecule. While the process relevant to bioluminescence within the luciferase cavity is light emission, the absorption data presented here provide a unique insight into how the electronic states of oxyluciferin are altered by microenvironmental perturbations. For the bare ion we observe broad absorption with a maximum at 548 +/- 10 nm, and addition of a water molecule is found to blue-shift the absorption by approximately 50 nm (0.23 eV). Test calculations at various levels of theory uniformly predict a blue-shift in absorption caused by a single water molecule, but are only qualitatively in agreement with experiment highlighting limitations in what can be expected from methods commonly used in studies on oxyluciferin. Combined molecular dynamics simulations and time-dependent density functional theory calculations closely reproduce the broad experimental peaks and also indicate that the preferred binding site for the water molecule is the phenolate oxygen of the anion. Predicting the effects of microenvironmental interactions on the electronic structure of the oxyluciferin anion with high accuracy is a nontrivial task for theory, and our experimental results therefore serve as important benchmarks for future calculations.

Place, publisher, year, edition, pages
American Chemical Society , 2013. Vol. 135, no 17, 6485-6493 p.
National Category
Engineering and Technology
URN: urn:nbn:se:liu:diva-93969DOI: 10.1021/ja311400tISI: 000318469100023OAI: diva2:628269

Funding Agencies|Lundbeckfonden||Human Frontier Science Project|RGY0081/2011|Kyoto Universitys Hakubi Project||Portuguese Foundation for Science and Technology|PTDC/FIS/103587/2008|Swedish Research Council|621-2010-5014|SERC (Swedish e-Science Research Center)||

Available from: 2013-06-13 Created: 2013-06-13 Last updated: 2013-06-13

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Linares, MathieuNorman, Patrick
By organisation
Computational PhysicsThe Institute of Technology
In the same journal
Journal of the American Chemical Society
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 169 hits
ReferencesLink to record
Permanent link

Direct link