An Extended Target CPHD Filter and a Gamma Gaussian Inverse Wishart Implementation
2013 (English)In: IEEE Journal on Selected Topics in Signal Processing, ISSN 1932-4553, E-ISSN 1941-0484, Vol. 7, no 3, p. 472-483Article in journal (Refereed) Published
Abstract [en]
This paper presents a cardinalized probability hypothesis density (CPHD) filter for extended targets that can result in multiple measurements at each scan. The probability hypothesis density (PHD) filter for such targets has been derived by Mahler, and different implementations have been proposed recently. To achieve better estimation performance this work relaxes the Poisson assumptions of the extended target PHD filter in target and measurement numbers. A gamma Gaussian inverse Wishart mixture implementation, which is capable of estimating the target extents and measurement rates as well as the kinematic state of the target, is proposed, and it is compared to its PHD counterpart in a simulation study. The results clearly show that the CPHD filter has a more robust cardinality estimate leading to smaller OSPA errors, which confirms that the extended target CPHD filter inherits the properties of its point target counterpart.
Place, publisher, year, edition, pages
IEEE Signal Processing Society, 2013. Vol. 7, no 3, p. 472-483
Keywords [en]
Cardinalized, CPHD, Extended targets, Inverse Wishart, Multiple target tracking, Probability hypothesis density, PHD, Random matrices, Random sets
National Category
Control Engineering
Identifiers
URN: urn:nbn:se:liu:diva-94596DOI: 10.1109/JSTSP.2013.2245632ISI: 000319275500010OAI: oai:DiVA.org:liu-94596DiVA, id: diva2:633671
Projects
CADICSCUAS
Funder
Swedish Research CouncilSwedish Foundation for Strategic Research
Note
Funding Agencies|Swedish Research Council under the Linnaeus Center (CADICS)||Swedish Research Council|621-2010-4301|Swedish Foundation for Strategic Research||
2013-06-272013-06-272017-12-06Bibliographically approved