liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Cyclic Hot Corrosion of Thermal Barrier Coatings and Overlay Coatings
Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
Siemens Industrial Turbomachinery AB, Finspong, Sweden.
Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
GKN Aerospace Engine Systems, Trollhättan, Sweden.
Show others and affiliations
2013 (English)In: Proceedings of ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, GT2013, The American Society of Mechanical Engineers (ASME) , 2013, Vol. 4, 1-8 p.Conference paper, Published paper (Refereed)
Abstract [en]

The influence, and interdependence, of water vapor and Na2SO4–50 mol% NaCl on the oxidation of a NiCoCrAlY coating and a thermal barrier coating (TBC) were studied at 750 °C. Water vapor was found to have a negligible effect on oxide composition, but influenced the oxide morphology on the NiCoCrAlY coating. Na2SO4–50 mol% NaCl deposits on the coatings influencedoxide composition, most notably by the promotion of a Y rich phase. The effect of Na2SO4–50 mol% NaCl deposits was also evident for the TBC coated specimen, where the formed metal/ceramic interface oxide was affected by salt reaching the interface by penetration of the zirconia TBC.

Place, publisher, year, edition, pages
The American Society of Mechanical Engineers (ASME) , 2013. Vol. 4, 1-8 p.
National Category
Materials Engineering
Identifiers
URN: urn:nbn:se:liu:diva-95556DOI: 10.1115/GT2013-95526ISI: 000361499900009ISBN: 978-0-7918-5518-8 (print)OAI: oai:DiVA.org:liu-95556DiVA: diva2:635992
Conference
ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, GT2013, San Antonio, Texas, USA, June 3-7, 2013
Note

Paper No. GT2013-95526

Available from: 2013-07-08 Created: 2013-07-08 Last updated: 2016-05-13Bibliographically approved
In thesis
1. Thermal Barrier Coatings: Durability Assessment and Life Prediction
Open this publication in new window or tab >>Thermal Barrier Coatings: Durability Assessment and Life Prediction
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Thermal barrier coating (TBC) systems are coating systems containing a metallic bond coat and a ceramic top coat. TBCs are used in gas turbines for thermal insulation and oxidation resistance. Life prediction of TBCs is important as high-temperature exposure degrades the coatings through mechanisms such as thermal fatigue and the formation and growth of thermally grown oxides (TGOs). This thesis presents research on durability assessment and life prediction of air plasma sprayed TBCs.

The adhesion of thermal barrier coatings subjected to isothermal oxidation, thermal cycling fatigue and thermal shock was studied. The adhesion strength and fracture characteristics were found to vary with heat treatment type.

The influence of interdiffusion between bond coat and substrate was studied on TBCs deposited on two different substrates. The thermal fatigue life was found to differ between the two TBC systems. While fractography and nanoindentation revealed no differences between the TBC systems, the oxidation kinetics was found to differ for non-alumina oxides.

The influence of bond coat/top coat interface roughness on the thermal fatigue life was studied; higher interface roughness promoted longer thermal fatigue life. Different interface geometrieswere tried in finite element crack growth simulations, and procedures for creating accurate interface models were suggested.

The influence of water vapour and salt deposits on the oxidation/corrosion of a NiCoCrAlY coating and a TBC were studied. Salt deposits gave thicker TGOs and promoted an Y-rich phase. The effect of salt deposits was also evident for TBC coated specimens.

A microstructure-based life model was developed using the Thermo-Calc software. The model included coupled oxidation-diffusion, as well as diffusion blocking due to the formation of internal oxides and pores. The model predicted Al-depletion in acceptable agreement with experimental observations.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2013. 65 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1527
National Category
Engineering and Technology
Identifiers
urn:nbn:se:liu:diva-96816 (URN)978-91-7519-569-8 (ISBN)
Public defence
2013-10-18, ACAS, Hus A, Campus Valla, Linköpings universitet, Linköping, 10:15 (English)
Opponent
Supervisors
Funder
Swedish Energy Agency
Available from: 2013-08-27 Created: 2013-08-27 Last updated: 2014-01-07Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Eriksson, RobertBrodin, HåkanJohansson, Sten

Search in DiVA

By author/editor
Eriksson, RobertBrodin, HåkanJohansson, Sten
By organisation
Engineering MaterialsThe Institute of Technology
Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 180 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf