liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Terrain Navigation using Bayesian Statistics
Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, The Institute of Technology.
Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, The Institute of Technology.
Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, The Institute of Technology.
1999 (English)In: IEEE Control Systems, ISSN 1066-033X, Vol. 19, no 3, 33-40 p.Article in journal (Refereed) Published
Abstract [en]

The performance of terrain-aided navigation of aircraft depends on the size of the terrain gradient in the area. The point-mass filter (PMF) described in this work yields an approximate Bayesian solution that is well suited for the unstructured nonlinear estimation problem in terrain navigation. It recursively propagates a density function of the aircraft position. The shape of the point-mass density reflects the estimate quality; this information is crucial in navigation applications, where estimates from different sources often are fused in a central filter. Monte Carlo simulations show that the approximation can reach the optimal performance, and realistic simulations show that the navigation performance is very high compared with other algorithms and that the point-mass filter solves the recursive estimation problem for all the types of terrain covered in the test. The main advantages of the PMF is that it works for many kinds of nonlinearities and many kinds of noise and prior distributions. The mesh support and resolution are automatically adjusted and controlled using a few intuitive design parameters. The main disadvantage is that it cannot solve estimation problems of very high dimension since the computational complexity of the algorithm increases drastically with the dimension of the state space. The implementation used in this work shows real-time performance for 2D and in some cases 3D models, but higher state dimensions are usually intractable.

Place, publisher, year, edition, pages
1999. Vol. 19, no 3, 33-40 p.
Keyword [en]
Terrain Navigation, Bayesian inference, Point-mass filter, Cramér-Rao bound
National Category
Control Engineering
Identifiers
URN: urn:nbn:se:liu:diva-95666DOI: 10.1109/37.768538OAI: oai:DiVA.org:liu-95666DiVA: diva2:637186
Available from: 2013-07-16 Created: 2013-07-16 Last updated: 2013-07-16

Open Access in DiVA

No full text

Other links

Publisher's full textRelated report

Authority records BETA

Ljung, LennartGustafsson, Fredrik

Search in DiVA

By author/editor
Ljung, LennartGustafsson, Fredrik
By organisation
Automatic ControlThe Institute of Technology
Control Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 128 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf